

Automated Market Maker System:

Cryptography and Implementation

Review

Kaddex, Inc.

Version 2.0 – July 14, 2022

Prepared By

Eric Schorn

Aleks Kircanski

Kevin Henry

Parnian Alimi

Prepared For

Nicolas Ramsrud

Adrian Cardoso

Daniele De Vecchis

Giuseppe Pace

Gustavo Spelzon

Kate Oztunc

1 Executive Summary

Synopsis

During April through July of 2022, Kaddex Inc. engaged NCC Group’s Cryptography

Services team to perform a cryptography and implementation review of Kaddex’s

Automated Market Maker (AMM) System. This system consists of a suite of contracts that

facilitate peer-to-peer market making and swapping of tokens on the Kadena blockchain.

Full source code was provided, along with support via several video calls and also over a

private Slack channel. This document covers the conclusion of both phase 1 and phase 2,

which were delivered within 50-person days of total effort.

Scope

The primary materials utilized for this review include:

Phase 1 targeted Kaddex code within commit 204b93e of github.com/kaddex-org/

wrapper-contract, with primary functional paths involving:

kadenaswap/exchange.pact – core module for the exchange.

wrapper/wrapper.pact – mainly provides for: A) boosted KDX rewards for liquidity

provider fees, B) adding liquidity with a single side of the pair, and C) utility functions

for the front-end to query LP stats.

kadenaswap/tokens.pact – liquidity tokens used by exchange.

kadenaswap/gas-station/gas-station.pact – creates and manages the gas station.

wrapper/tokens/kdx.pact – KDX token module, a modified fungible-v2 token.

staking/staking.pact – manages exchange fees, tracks users, and distributes

rewards.

Including wrapper/tokens/alchemist.pact & wrapper/tokens/skdx.pact .

Phase 2 targeted commit 381c9ed then 8df27d0 of the above repository.

Precedent Kadenaswap code at commit e3958cd of github.com/kadena-io/kadenaswap.

Uniswap V2 code at commit 4dd5906 of github.com/Uniswap/v2-core.

The project methodology initially relied upon manual code review followed by dynamic

experimentation within the REPL and interaction with testnet interfaces.

Limitations

Additional contract-level documentation is needed to reliably compare intended system

behavior against implemented code, and making a significant investment in testing to

ensure correct functionality is strongly recommended. As Chainweb/Pact is an emerging

technology and the possibility of human error exists, it is advisable to get multiple

independent opinions, including the implementation of a bug bounty. Nonetheless, NCC

Group was able to achieve reasonable coverage of the in-scope material listed above.

Key Findings

While the in-scope code is clearly under rapid development with a variety of improvements

ongoing, it appears to be thoughtfully architected and conservatively implemented. The

review uncovered several findings to be resolved, including:

Unchecked constraints during liquidity removal allows participants to withdraw more

liquidity than they previously put in. As a consequence, they can take ownership of

other users’ tokens.

Missing checks on time-delta and price-delta prior to division where a price-delta

divided by a negative or excessively small time-delta may give a negative result or

introduce arithmetic artifacts. Similarly, a negative price-delta calculated from a

final < initial price scenario may result in a negative average price.

•

◦

◦

◦

◦

◦

◦

-

•

•

•

•

•

2 / 58 – Executive Summary

Client Confidential

https://github.com/kaddex-org/wrapper-contract/tree/204b93e2bf845b680f4e7bcfd24ca88e07532ad4
https://github.com/kaddex-org/wrapper-contract/tree/204b93e2bf845b680f4e7bcfd24ca88e07532ad4
https://github.com/kadena-io/kadenaswap/tree/e3958cd2254aacc7c9558af5836ff2ec8612e7ae
https://github.com/Uniswap/v2-core/tree/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc

Weak input validation on exchange.pact API where an attacker able to modify or inject

malicious API traffic across a trust boundary may be able to exploit insufficiently

validated input resulting in unexpected downstream behavior. Aggressive-deny input

validation should be reviewed for the API of all contracts.

Insufficient testing strategy, methodology and implementation requiring the

development of a “broken until proven working” approach involving both per-function

and user scenario tests, coverage reporting/analysis, and extensive coverage of

unhappy paths. Finding BG3 has been expanded upon in phase 2 and increased in

severity.

Several additional informational findings are also documented. Extensive notes are

included in the appendix titled Notes Involving Uniswap V2, Kadenaswap and several

Kaddex modules.

Strategic Recommendations

NCC Group recommends addressing the findings from this engagement and prioritizing

several themes during future development as follows:

Minimize the attack surface, minimize the functionality: For example, some functions

require the two token arguments to be provided in canonical order, while others tolerate

any ordering by correcting mis-ordered function arguments internally. Remove the latter

functionality and perform aggressive-deny validation. Eliminate multiple ways to do

things, for example the register-pair , register-pair-only , and add-liquidity

functions contain redundant functionality (only the latter two may be needed). Consider

whether some code can be further refactored into a utils library, which may helpful to

avoid implementing min 3 times.

Ring-fence core functionality from peripheral functionality: Complementing the above

theme, continue focusing on delineating security-critical, state-changing, self-contained

core functionality from the less-critical supporting functionality, similar to the approach

Uniswap V2 has taken with core versus periphery , and ensure directory and file

organization reflects this.

Invest big in testing: Develop test cases for every function starting with low-level

helpers and working towards API-level functionality with robust coverage for both

happy and unhappy paths. Implement continuous integration and system-level testing.

Invest in documentation: Describe overall system intent, required behavior, correct/

incorrect system operation, and tightly define valid stimulus. Testing should be able to

connect requirements to implemented code, and will increase user confidence.

•

•

•

•

•

•

3 / 58 – Executive Summary

Client Confidential

2 Dashboard

Finding Breakdown

Critical issues 1

High issues 1

Medium issues 1

Low issues 4

Informational issues 7

Total issues 14

Category Breakdown

Configuration 2

Data Validation 4

Error Reporting 1

Other 5

Patching 2

 Critical High Medium Low Informational

4 / 58 – Dashboard

Client Confidential

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Token Heist Via Bogus Wrapper Liquidity Removals Reported E9F Critical

Systemic Unexercised/Untested Functionality Updated BG3 High

Missing Checks on time-delta and price-delta

Prior to Division

Reported HH7 Medium

Outdated Pact Dependency Reported LVG Low

Weak Input Validation on exchange.pact API Reported 47B Low

Penalty Calculation Zero Maturation Coefficient Edge

Case

Reported 72V Low

Unclear Governance May Allow Market Manipulation New 6HY Low

Discussion Item: Unicode Normalization Reported H36 Info

Unnecesary Locking Functionality Exposed Reported 9A9 Info

Dead Code Lines for pair-key Reported A7K Info

Unnecessary Privilege Restriction Reported H2F Info

Lack of KDX Precision Flooring in Stake/Unstake

Functions

Reported YLQ Info

Additional Staking Contract Redundancies and

Observations

Reported TAD Info

Adding Liquidity Allows Negative Minimums New BXE Info

5 / 58 – Table of Findings

Client Confidential

4 Finding Details

Token Heist Via Bogus Wrapper Liquidity

Removals

Overall Risk Critical

Impact High

Exploitability High

Finding ID NCC-E004218-E9F

Category Other

Status Reported

Impact

Participants on the network can withdraw more liquidity than they previously put in. As a

consequence, they can take ownership of other users’ tokens.

Description

The Kaddex Wrapper contract wraps the Kadenaswap AMM in order to expose additional

features to investors, such as protection from IL (Impermanent Loss). The Wrapper contract

is effectively a proxy contract sitting between investors and the AMM which holds

investors’ positions. Roughly, the workflow is as follows:

In order to add liquidity to Kaddex, investors call the Wrapper’s add-liquidity function,

which accepts an investor’s tokenA/tokenB funds and trades them for LP tokens in the

Exchange contract (the Kadenaswap AMM). The minted LP tokens are held by the

Wrapper and are not forwarded to the investor. The Wrapper’s investor positions, their

account information and each investor’s holdings are described solely by the Wrapper

tables/positions.

When it is time to remove liquidity, investors call remove-liquidity on the Wrapper

contract and the Wrapper contract surrenders a portion of the users’ LP tokens it holds,

in return for tokenA/tokenB liquidity. Finally, the Wrapper contract sends tokenA/tokenB

funds to the user and the user positions in the Wrapper contract are updated.

An additional complication is that users can interact with the Exchange contract directly,

using some of the same addresses that are used in their Wrapper positions. NCC Group

consultants continue to look for issues that would stem from de-syncing these two views

(Exchange’s ledger and Wrapper’s positions). This finding arose while searching for such

data de-sync issues.

Consider the following snippets from the Wrapper’s remove-liquidity function. The

liquidity parameter is the LP token amount by which the investor’s position is reduced.

The question is: what prevents the investor from claiming an amount that is beyond their

recorded position?

Critical

•

•

(defun remove-liquidity:object

(tokenA:module{fungible-v2}

tokenB:module{fungible-v2}

liquidity:decimal

amountA-min:decimal

amountB-min:decimal

sender:string

to:string

to-guard:guard

wants-kdx-rewards:bool

)

;; ... SNIP ...

6 / 58 – Finding Details

Client Confidential

The last two highlighted lines aim to check the liquidity parameter passed by the

investor. The first highlighted line ensures liquidity is less than entry-total-liquidity .

However, this variable is defined as:

The liquidity-account table is a generic table, unrelated to a specific user. The entry-

total-liquidity value is an aggregated LP token amount held by all users of the Wrapper

contract for that particular token pair. The second highlighted line checks that the Wrapper

contract’s LP token account in the Exchange actually has the funds that are requested. The

remove-liquidity function, however, does not verify that that particular caller holds the

funds. By the end of the remove-liquidity function, the investor’s positions are

decreased, but there is no check that this value stays positive. As such, an investor should

be able to withdraw funds corresponding to other users’ LP tokens.

Recommendation

Discussions with the Kaddex Team suggested the following constraints will be enforced:

;; verify the liquidity position guard and invariants

(install-capability (LIQUIDITY_POS_GUARD tokenA tokenB sender))

(enforce (= tokenA token0) "sanity check: token0 is tokenA")

(enforce (= tokenB token1) "sanity check: token1 is tokenB")

(enforce (<= liquidity entry-total-liquidity)

(format "remove-liquidity: Insufficient liquidity position ({} > {})" [liquidity, entry

-total-liquidity]))

(enforce (<= liquidity actual-total-liquidity) "sanity check: actual-total-liquidity

covers the amount")

(let* (

;; .. SNIP ..

(entry-total-liquidity (at 'liquidity-tokens liquidity-account))

(actual-total-liquidity (tokens.get-balance pair-key liquidity-account-name))

0 < liquidity <= liquidity-position-share

0 < withdrawal-fraction <= 1.0

7 / 58 – Finding Details

Client Confidential

Systemic Unexercised/Untested Functionality

Overall Risk High

Impact High

Exploitability Undetermined

Finding ID NCC-E004218-BG3

Category Error Reporting

Status Updated

Impact

Avoidable bugs may result in the loss of user funds. Missing tests cannot help precisely

specify intended (and unintended) functionality. Insufficient test coverage will reduce the

agility and reliability of refactoring efforts. Poor testing will decrease the confidence of

potential users.

Description

Safety and security oriented software must be considered broken until proven working.

This requires a robust testing approach involving low-level per-function (unit) testing as

well as higher-level user scenario (integration) testing. Both ‘happy’ paths that represent

correct functional flow and ‘unhappy’ paths that represent incorrect input or exceptional

circumstances should be exhaustively tested. A separate ‘golden model’ for the calculation

of fees and rewards should generate self-checking test cases for the contract code (similar

to what is currently done for simulator.repl).

Specific examples include:

There appear to be specific constraints around token precision that are not tested.

Users may interact with wrapper.pact and/or exchange.pact in some circumstances.

This interaction is not tested.

The KDX rewards and boosting process are not tested.

The withdraw-claim function within wrapper.pact is wholly unused/unexercised. The

process-claim-request-if-necessary function within wrapper.pact is referenced in

wrapper.repl but currently commented out. Thus, neither function is tested.

The simulator.repl test is minimalistic and does not consider extreme ratios, multiple

pairs, or more than two users.

There is (approximately) no per-function testing.

There is very minimal testing of ‘unhappy’ paths.

Code upgrade/update paths are not tested.

Many of the above functions involve potentially critical steps in the expected system usage

flow and should be exhaustively tested. With minimal documentation, matching intended-

versus-implemented functionality is error- prone. It is highly likely that testing would have

caught finding "Token Heist Via Bogus Wrapper Liquidity Removals".

Recommendation

Implement low-level per-function tests for the ‘happy’ path and all conceivable

‘unhappy’ paths.

Implement scenario-level testing both individually and as a put-together series.

Implement a golden model for value/fee/rewards calculation and generate self-testing

cases.

Measure statement and path coverage (by hand if necessary)

High

•

•

•

•

•

•

•

•

•

•

•

•

8 / 58 – Finding Details

Client Confidential

Missing Checks on time-delta and price-

delta Prior to Division

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-E004218-HH7

Category Data Validation

Status Reported

Impact

A price-delta divided by a negative or excessively small time-delta may give a negative

result or introduce arithmetic artifacts. Similarly, a negative price-delta may result in a

negative average price.

Description

The get-average-price function, implemented in wrapper.pact as shown below, returns a

result critical to the correct operation of the system.

There is no check on the whether the time-delta is negative or an unreasonably small

value prior to the division operation highlighted above. If the initial timestamp matches the

final timestamp, the division should cause the transaction to fail (as desired). If the initial

timestamp were larger than the final timestamp for some reason, the average price

returned would be negative. If the initial timestamp were exceedingly close to the final

timestamp, unexpected rounding effects may be introduced.

A similar situation involves price-delta where a final price that is smaller than the initial

price will result in a negative numerator. The function will then give a negative result.

Note that an arguably-similar non-zero check is performed within the UniswapV2Pair.sol

contract.1

Recommendation

Validate (enforce) that the time-delta is larger than a reasonable minimum based on

normal operating conditions. The price-delta should be an absolute value of the price

difference.

Location

Near line 1073 of wrapper/wrapper.pact

Medium

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

(defun get-average-price:decimal

(initial:object{exchange.observation}

final:object{exchange.observation}

)

"Utility function for calculating the TWAP between two oracle observations performed."

(let*

((time-delta (diff-time (at 'timestamp final) (at 'timestamp initial)))

(price-delta (- (at 'price final) (at 'price initial)))

)

(exchange.truncate (get-base-token) (/ price-delta time-delta))

)

)

1. https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/

contracts/UniswapV2Pair.sol#L77

9 / 58 – Finding Details

Client Confidential

https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L1073
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L77
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L77
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L77

Outdated Pact Dependency

Overall Risk Low

Impact Medium

Exploitability Undetermined

Finding ID NCC-E004218-LVG

Category Patching

Status Reported

Impact

Testing the AMM behavior against an outdated Pact version may not surface differences

stemming from the much more recent Pact version currently deployed on Kadena

Chainweb nodes.

Description

The exchange.pact source file begins by specifying a minimum version of Pact as shown

below.

Pact version 3.7 was first released in December 20202. The version of Pact deployed on

the current Kadena Chainweb node is 4.2.0.1,3 which is significantly newer.

Pact version 4.0 (a new major version) and onwards includes a large number of fixes and

enhancements that can impact contract behavior. Relevant changes may pertain to gas

consumption, changes in arithmetic precision, and new native operations. Should the code

already take advantage of these, it may no longer be runnable on Pact version 3.7 as

currently specified.

Recommendation

Adapt the code to enforce a minimum version of 4.2. Ensure all dependencies and tools are

updated to the latest specific versions4 recommended for production deployment and

consistent with deployed Kadena Chainweb nodes. Add a periodic gating milestone to the

development process that involves reviewing all dependencies for outdated or vulnerable

versions.

Location

Line 13 of wrapper-contract/kadenaswap/exchange.pact

Low

13

14

15

16

17

18

(enforce-pact-version "3.7")

(namespace (read-msg 'ns))

(module exchange GOVERNANCE

...

2. https://github.com/kadena-io/pact/releases/tag/v3.7.0

3. https://github.com/kadena-io/chainweb-node/blob/328785eb7e194f9707ec60b0af31c889aac93af

e/chainweb.cabal#L374

4. https://cabal.readthedocs.io/en/3.4/cabal-project.html#cfg-flag---reject-unconstrained-

dependencies

10 / 58 – Finding Details

Client Confidential

https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L13
https://github.com/kadena-io/pact/releases/tag/v3.7.0
https://github.com/kadena-io/chainweb-node/blob/328785eb7e194f9707ec60b0af31c889aac93afe/chainweb.cabal#L374
https://github.com/kadena-io/chainweb-node/blob/328785eb7e194f9707ec60b0af31c889aac93afe/chainweb.cabal#L374
https://github.com/kadena-io/chainweb-node/blob/328785eb7e194f9707ec60b0af31c889aac93afe/chainweb.cabal#L374
https://github.com/kadena-io/chainweb-node/blob/328785eb7e194f9707ec60b0af31c889aac93afe/chainweb.cabal#L374
https://cabal.readthedocs.io/en/3.4/cabal-project.html#cfg-flag---reject-unconstrained-dependencies
https://cabal.readthedocs.io/en/3.4/cabal-project.html#cfg-flag---reject-unconstrained-dependencies

Weak Input Validation on exchange.pact API

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E004218-47B

Category Data Validation

Status Reported

Impact

An attacker able to modify or inject malicious API traffic across a trust boundary may be

able to exploit insufficiently validated input resulting in unexpected downstream behavior.

Description

The add-liquidity function implemented in exchange.pact is an API5 that may be

considered a trust boundary. This motivates the additional property-level checks

implemented near line 31. As shown below, validation of ‘unit precision’ is performed on

input amounts per lines 535 and 536. However, the initially received decimal amounts are

not validated to be positive values (hence zero or negative values may enter the logic).

The API function currently (initially) accepts zero and negative values, and proceeds to

perform calculations on them starting with line 544. While downstream code may currently

happen to handle this correctly, best practices suggest early and aggressive input

validation – particularly to protect against future code/logic updates.

Similarly, the liquidity parameter6 of the remove-liquidity function implemented in the

same source file would benefit from an additional check.

Low

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

(defun add-liquidity:object

(tokenA:module{fungible-v2}

tokenB:module{fungible-v2}

amountADesired:decimal

amountBDesired:decimal

amountAMin:decimal

amountBMin:decimal

sender:string

to:string

to-guard:guard

)

"Adds liquidity to an existing pair. The `to` account specified will receive the..."

(enforce-contract-unlocked)

(tokenA::enforce-unit amountADesired) ;; enforce the informed amounts are in the corr...

(tokenB::enforce-unit amountBDesired)

(with-capability (MUTEX) ;; obtain the mutex lock

(obtain-pair-lock (get-pair-key tokenA tokenB)))

(let*

((p (get-pair tokenA tokenB))

(reserveA (reserve-for p tokenA))

(reserveB (reserve-for p tokenB))

;; calculate the actual amounts of liquidity that will be added to keep the rese...

(amounts ...

5. https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e075

32ad4/kadenaswap/exchange.pact#L8

6. https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e075

32ad4/kadenaswap/exchange.pact#L649

11 / 58 – Finding Details

Client Confidential

https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L8
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L8
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L8
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L8
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L649
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L649
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L649
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L649

Recommendation

In addition to precision and other checks, ensure input amounts are positive and reject

otherwise.

Location

Near line 535 and 649 of wrapper-contract/kadenaswap/exchange.pact

12 / 58 – Finding Details

Client Confidential

https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/kadenaswap/exchange.pact#L535

Penalty Calculation Zero Maturation

Coefficient Edge Case

Overall Risk Low

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E004218-72V

Category Other

Status Reported

Impact

In the case when the maturation coefficient is set to zero, the penalty calculation function

may exhibit behavior different than if the maturation coefficient were non-zero. This may

result result in logical issues down the line.

Description

Consider the staking module’s function that penalizes stakers who claim their rewards

before the maturation period ends:

In the first highlighted line, if the maturation period has passed, the function returns zero,

meaning that no penalty is applied. The second highlighted line concerns the hard-coded M

ATURATION_COEFFICIENT parameter, which determines the shape of the penalty curve and is

currently set to 0.66. If this coefficient is zero, the comment indicates that no penalties

should be applied. In that case, regardless of the passed number of seconds, the penalty

calculation formula would return the full amount, meaning that the staker would always be

penalized with the full amount. After discussing with the Kaddex Team, it appears that the

error is in the code and not in the comment.

In addition, if the maturation coefficient is zero (the second highlighted line), calculation-

penalty does not floor the result up to kdx.precision . The rounding, however, does

happen in the last line of the snippet. This appears to be an inconsistency, as if the amount

input is not rounded and the maturation coefficient is zero, the function output will not be

rounded either.

Recommendation

If the logic that handles a zero maturation coefficient is for debugging purposes, consider

removing it to simplify the code. If in practice the coefficient can be zero, correct either the

code or the comment. Finally, in that case, it may make sense to round the amount before

returning the amount.

Low

(defun calculate-penalty:decimal

(seconds:decimal

amount:decimal)

"Given a reward amount and seconds passed since effective-start, calculate \

\ reward penalty. Applies the reward penalty curve as described above \

\ defconst MATURATION_COEFFICIENT."

(enforce (>= seconds 0.0) ;; Enforce that some time has passed from effective-start.

(format "Violation of causality ({} seconds staked)" [seconds]))

(if (> seconds MATURATION_PERIOD) 0.0 ;; No penalty after maturation.

(if (= MATURATION_COEFFICIENT 0.0) amount ;; No penalties if MATURATION_COEFFICIENT is 0.

(let*

((maturation-fraction (/ seconds MATURATION_PERIOD))

(penalty-base (- 1.0 maturation-fraction))

(penalty-exp (^ penalty-base MATURATION_COEFFICIENT)))

(floor (* amount penalty-exp) (kdx.precision))))))

13 / 58 – Finding Details

Client Confidential

Unclear Governance May Allow Market

Manipulation

Overall Risk Low

Impact Medium

Exploitability Undetermined

Finding ID NCC-E004218-6HY

Category Patching

Status New

Impact

Privileged parties may be able to modify configuration parameters or critical business logic

in the contracts for unfair advantage.

Description

The Uniswap V2 contracts deployed on Ethereum are essentially stand-alone and

immutable7. As a result, participants are protected from post-deployment changes that

may be to their disadvantage. Proposals for future enhancements or changes are

incorporated into a separate and distinct set of next-generation contracts (e.g., Uniswap

V3).

However, the Kadena Chainweb/Pact system provides a fundamentally different

mechanism8 from Ethereum for managing contract upgrades. Both the wrapper.pact and

exchange.pact , and various token contracts, support a governance model that boils down

to a keyset-ref-guard 'kaddex-ns-admin check – in other words, administrative keys.

Centralizing authority over contracts in this way nullifies many of the benefits of deploying

the contract to a decentralized network, and may make the system less attractive to

participants. Participants must trust Kaddex to be both safe against attackers who may

take control of administrative accounts and trustworthy enough to not take advantage of

their powers.

Additionally, the contracts support OPS privileges9 that are used by external off-chain

systems (within Kaddex) which are necessary for correct system functionality. This

presents another component that participants must trust.

Recommendation

This is a low-severity finding to surface concern. Articulate the governance10 process for

bug-fixes, the steps taken to protect high-value keys, and the commitments behind

external off-chain systems.

Location

The wrapper.pact , exchange.pact , and the various token contracts.

Low

7. https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol

8. https://medium.com/kadena-io/pact-solving-smart-contract-governance-and-

upgradeability-976aac3bbb31

9. https://github.com/kaddex-org/wrapper-contract/blob/main/wrapper/wrapper.pact#L38

10. https://docs.kaddex.com/kaddex-features/governance/proposals-and-voting-power-

calculation#governance

14 / 58 – Finding Details

Client Confidential

https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol
https://medium.com/kadena-io/pact-solving-smart-contract-governance-and-upgradeability-976aac3bbb31
https://medium.com/kadena-io/pact-solving-smart-contract-governance-and-upgradeability-976aac3bbb31
https://github.com/kaddex-org/wrapper-contract/blob/main/wrapper/wrapper.pact#L38
https://docs.kaddex.com/kaddex-features/governance/proposals-and-voting-power-calculation#governance
https://docs.kaddex.com/kaddex-features/governance/proposals-and-voting-power-calculation#governance

Discussion Item: Unicode Normalization

Overall Risk Informational

Impact Medium

Exploitability Undetermined

Finding ID NCC-E004218-H36

Category Data Validation

Status Reported

Impact

This (currently) strictly-informational finding is intended to provide documentation for an

early item of discussion.

Different Unicode encodings of the same string identifier may lead to spoofing attacks

based on user misunderstandings, as well as interoperability problems potentially

impacting consensus between interacting implementations/components.

Description

When entering the same visual/logical string into a UI, differently encoded Unicode strings

may arise from malicious intent or simply the broad range of participating devices,

operating systems, locales, languages and applications involved. Endpoints handling string

identifiers, such as coin names, user names or secrets, should validate and/or normalize

them before use to A) ensure consistent handling and B) maximize interoperability.

Divergent string encoding typically involves characters with accents or other modifiers that

have multiple correct Unicode encodings. For example, the Á (a-acute) glyph can be

encoded as a single character U+00C1 (the “composed” form) or as two separate

characters U+0041 then U+0301 (the “decomposed” form). In some cases, the order of a

glyph’s combining elements is significant and in other cases different orders must be

considered equivalent11. At the extreme, the Unicode character U+FDFA can be correctly

encoded as either a single code point or a sequence of up to 18 code points12. An identifier

may appear visually identical but in fact be physically distinct, such as “Álpha Token” and

“Álpha Token”. Normalization is the common131415 process of standardizing string

representation such that if two strings are canonically equivalent and are normalized to the

same normal form, their byte representations will be the same. Only then can string

comparison, ordering, deduplication and cryptographic operations be relied upon.

There are a variety of Normalization methods available16 with NFKC being most

appropriate17 in this circumstance (although note that BIP-39 uses NFKD18). Similarly,

section 5.1.1.2 of the NIST Special Publication 800-63B Digital Identity Guidelines19

document gives guidance related to the use of Unicode in Memorized Secret Verifiers as

follows:

If Unicode characters are accepted in memorized secrets, the verifier SHOULD

apply the Normalization Process for Stabilized Strings using either the NFKC or

NFKD normalization defined in Section 12.1 of Unicode Standard Annex 15. This

Info

11. http://unicode.org/reports/tr15/tr15-22.html

12. https://www.compart.com/en/unicode/U+FDFA

13. https://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html

14. https://blog.golang.org/normalization

15. https://docs.rs/unicode-normalization/0.1.13/unicode_normalization/

16. http://unicode.org/reports/tr15/#Norm_Forms

17. See question 2 of https://unicode.org/faq/normalization.html

18. https://en.bitcoin.it/wiki/BIP_0039

19. https://pages.nist.gov/800-63-3/sp800-63b.html

15 / 58 – Finding Details

Client Confidential

http://unicode.org/reports/tr15/tr15-22.html
https://www.compart.com/en/unicode/U+FDFA
https://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html
https://blog.golang.org/normalization
https://docs.rs/unicode-normalization/0.1.13/unicode_normalization/
https://docs.rs/unicode-normalization/0.1.13/unicode_normalization/
http://unicode.org/reports/tr15/#Norm_Forms
https://unicode.org/faq/normalization.html
https://en.bitcoin.it/wiki/BIP_0039
https://pages.nist.gov/800-63-3/sp800-63b.html

process is applied before hashing the byte string representing the memorized

secret. Subscribers choosing memorized secrets containing Unicode characters

SHOULD be advised that some characters may be represented differently by some

endpoints, which can affect their ability to authenticate successfully.

Best practices require Unicode normalization to prevent the proliferation of visually and

logically similar strings with different encodings. This can be considered a form of input

validation.

Recommendation

This topic requires more investigation within the specific Kaddex context before a firm

recommendation can be made. Generally, it is recommended to perform NKFC Unicode

normalization on all string identifiers immediately upon receipt using functionality such as

that found in the ‘unicode-transforms’ package20.

20. https://hackage.haskell.org/package/unicode-transforms

16 / 58 – Finding Details

Client Confidential

https://hackage.haskell.org/package/unicode-transforms

Unnecesary Locking Functionality Exposed

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-E004218-9A9

Category Other

Status Reported

Impact

The staking contract exposes functionality that allows operators to lock an arbitrary user’s

funds for unlimited amounts of time. This may undermine public confidence in the staking

module.

Description

The following function allows administrators to add arbitrary locks to chosen accounts:

As per discussions with the Kaddex team, the functionality was implemented to add

vesting schedules for early token holders. There is no planned use case and, at the same

time, it appears to give operators a degree of control that is unnecessary.

Recommendation

Since there is no planned usage for lock-stake and onboard-with-lock functions, they

may be deleted/modified.

Info

(defun lock-stake (account:string amount:decimal until:time)

"Operator-only function to add a stake lock to a given account."

(with-capability (OPS)

(with-read stake-table account

{ 'locks := locks }

(update stake-table account { 'locks: (+ locks ;; add to locks, which is a list of

stake-locks

[{ 'amount: amount, 'until: until }]) }))))

17 / 58 – Finding Details

Client Confidential

Dead Code Lines for pair-key

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E004218-A7K

Category Configuration

Status Reported

Impact

Dead code may reflect an unfinished implementation or incomplete refactoring.

Description

The let statement defining pair-key on lines 52421 and 76522 of wrapper.pact is

unecessary. This value is not subsequently used within the enclosing function.

Recommendation

Remove the unnecessary lines involving pair-key .

Location

wrapper-contract/wrapper/wrapper.pact

Info

21. https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e075

32ad4/wrapper/wrapper.pact#L524

22. https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07

532ad4/wrapper/wrapper.pact#L765

18 / 58 – Finding Details

Client Confidential

https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L524
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L524
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L524
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L524
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L765
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L765
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L765
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L765

Unnecessary Privilege Restriction

Overall Risk Informational

Impact None

Exploitability High

Finding ID NCC-E004218-H2F

Category Configuration

Status Reported

Impact

An expectation that retrieving all pending requests requires the OPS keyset is easily

bypassed.

Description

The get-all-pending-requests and get-user-pending-requests functions as

implemented in wrapper.pact are shown below. For the former function, line 1245 places

the read logic behind a with-capability clause23 which effectively requires the 'kaddex-

ops-keyset keyset24. Thus, the ability to get all pending requests could be expected to be

constrained to the OPS user.

However, line 135 defines the constant used above as the empty string.25

(defconst ALL_PENDING_REQUESTS_KEY "")

As a result, if any user calls the get-user-pending-requests function with an empty string,

the code will return all pending requests without requiring the OPS keyset. This was

confirmed via Shadena with the transaction (kaddex.wrapper.get-user-pending-requests

"") .

Note that the comment on line 1243 suggests these functions may be under review.

Recommendation

Consider whether the functionality can be simplified to target only the latter function.

Info

1243

1244

1245

1246

1247

1248

1249

;; TODO: not sure which of the below functions we will want to use for the data to

display on the frontend

(defun get-all-pending-requests:[string] ()

(with-capability (OPS) (at 'requests (read pending-requests ALL_PENDING_REQUESTS_KEY))))

(defun get-user-pending-requests:[string]

(account:string)

(at 'requests (read pending-requests account)))

23. https://pact-language.readthedocs.io/en/stable/pact-functions.html#with-capability

24. https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07

532ad4/wrapper/wrapper.pact#L167

25. https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07

532ad4/wrapper/wrapper.pact#L135

19 / 58 – Finding Details

Client Confidential

https://pact-language.readthedocs.io/en/stable/pact-functions.html#with-capability
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L167
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L167
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L167
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L167
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L135
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L135
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L135
https://github.com/kaddex-org/wrapper-contract/blob/204b93e2bf845b680f4e7bcfd24ca88e07532ad4/wrapper/wrapper.pact#L135

Lack of KDX Precision Flooring in Stake/

Unstake Functions

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-E004218-YLQ

Category Other

Status Reported

Impact

External systems’ calls to stake and unstake may fail due to precision issues.

Description

Kaddex contracts juggle with different decimal number precision specifications. On the one

hand, there is the native Pact precision (up to 256 decimal digits) inside the Kaddex

contracts themselves. In addition, there are wrapped/fungible token precision

specifications. All of the relevant fungible token contracts in the codebase hard-code their

precision to 12 digits, however, it is easily imaginable that other future wrapped tokens will

have different precisions. Finally, while addition and subtraction preserve precision,

operations such as multiplication and division do not. As such, as amounts travel between

different fungible tokens and Kaddex contracts, rounding needs to be carefully applied.

The most obvious consequence of an oversight in this regard is that a fungible token would

reject a particular transfer, potentially resulting in a stall in the staking contract operation.

As an informational illustration, consider a scenario where Kaddex onboards a fungible

token with precision different than the otherwise uniform precision in other tokens. This is

allowed as per the fungible token interface, as each particular token specifies their own

precision. When the sweep-one function is processing the token pair that involves that

particular token, the remove-liquidity function is called. The token amount that is sent to

pair-account and, subsequently, to the shared token amount, is expressed in that token’s

original precision. The same holds for sweep-one ’s amount0 and amount1 values. The

swap-to-kdx function needs to truncate the output amount during the conversion and this

is correctly done in the exchange contract. NCC Group consultants validated other token

travel trails and did not identify a precision inconsistency.

It is conceivable that external automated systems may access the staking and unstaking

interface. A problem could arise if these external systems use number systems with

precision different than 12 digits, such as double precision floats. In such a case, a call to

the staking/unstaking interface would fail since the KDX contract would not be able to

enforce the minimal precision (the enforce-unit function).

Recommendation

One may make an argument for rounding up to kdx.precision before wrapping/

unwrapping actions in staking/unstaking operations. This could make the code more

tolerant to external systems not strictly following the specification.

Info

20 / 58 – Finding Details

Client Confidential

https://github.com/kaddex-org/wrapper-contract/blob/4dd4eec86f5b4e6b390514f1c0c7b857f3174c74/kadenaswap/exchange.pact#L783

Additional Staking Contract Redundancies and

Observations

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E004218-TAD

Category Other

Status Reported

Impact

This is a purely informational finding which contains observations on how the staking

contract code could be improved.

Description

Rollup function unused variables

The seconds and now variables computed inside the let* statement are not used by the

rollup function. The new rollover is computed using the old cumulative and the amount

(i.e. it does not depend on the time). It is assumed this is a vestige from previous code

versions.

Subtraction by zero in swap-to-kdx

The final amount in swap-to-kdx is extracted as the last element in the array returned by e

xchange.swap-exact-in :

The subtraction by zero can be removed, as it does not change the index that is being

accessed.

sweep-some redundancies

The sweep-some function sweeps fees for a list of token pairs. For each pair, the LP token

fees are first converted to tokens and then to KDX. The total-out in the second line in the

snippet below is a sum of all KDX earnings.

Info

(defun rollup:decimal (account:string)

"Realize a given account's deserved reward amount into the rollover field of \

\ their stake record, resetting start-cumulative to the current revenue-per-kdx \

\ number. Should be done before any unstake or reward claim."

(with-capability (ROLLUP account)

(with-read stake-table account

{ 'amount := amount

, 'rollover := rollover

, 'effective-start := effective-start

, 'start-cumulative := start-cumulative }

(let*

((now (at 'block-time (chain-data)))

(seconds (diff-time now effective-start))

(at 'amount (at (- (length path) 0) ;; Extract amount out from swap result

(exchange.swap-exact-in

amount-in 0.0 ;; TODO: Supply a minimum amount out

(unroll-path token-in path) from to to-guard))))))

(drain-result (map (drain-account) accounts))

(total-out (fold (+) 0.0 drain-result))

;; Enforce that the KDX balance of KDX_BANK after the swapping is

21 / 58 – Finding Details

Client Confidential

The total-out cannot have more granular precision than kdx.precision and as such the

flooring in the last line appears redundant. Similarly, the first highlighted line appears to

enforce an invariant which has to hold. The line can be considered a debug statement/

invariant as it is not clear how it can be violated and as such may be up for deletion.

read-waiting implementation issue

The read-waiting function aims to return stakers that have pending stake:

It is unclear how pending-add can become negative, which makes this a possible

oversight.

revenue-per-kdx can spike during low stake levels

The sweep-some function updates the revenue-per-kdx variable as follows:

The total-out and staked-kdx values are independent. In a single-staker scenario (e.g.

right at staking contract creation or during other unforeseen irregular conditions), the

staker can make their stake as small as the KDX precision allows. This will result in the

revenue-per-kdx growing to a huge number. NCC Group consultants have not identified a

way to exploit this to gain advantage. Additionally, this condition could happen only in

irregular low stake conditions and, as such, does not appear to represent a threat.

Recommendation

Consider fixing the first four items in the finding. For the fifth item, unless the

revenue-per-kdx behavior is clearly unintended from the Kaddex team’s perspective, it

does not appear that it warrants any fix.

;; equal to the KDX balance before + the swap outputs.

(balance-after (kdx.get-balance KDX_BANK))

(effective-out (- balance-after balance-before)))

(enforce (= total-out effective-out) (format "Accounting mismatch (expected {} out,

received {})" [total-out effective-out]))

(if (= (floor total-out (kdx.precision)) 0.0)

`read-waiting`

The method appears to aim to return those stakers that have pending stake:

~~~lisp

(defun read-waiting:[string] ()

"Utility function to read the list of stakers waiting to be added to the pool. \

\ In production, will only be called on /local due to gas costs."

(map (at 'account) (select stake-table (where 'pending-add (< 0.0))))

)

(update state-table STATE_KEY

{ 'revenue-per-kdx: (+ prev-revenue (/ total-out staked-kdx)) })

total-out)))))))

22 / 58 – Finding Details

 

Client Confidential 



Adding Liquidity Allows Negative Minimums

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E004218-BXE

Category Data Validation

Status New

Impact

Missing input validation may allow mistaken or malicious values to interfere with

downstream logic resulting in undesirable behavior.

Description

The exchange.add-liquidity  and wrapper.add-liquidity  functions both have essentially

the same signature, defined as follows, where the 5
th

 and 6
th

 parameters represent an

acceptable minimum amount of tokens to be consumed.

Experiments indicate that calling these functions with negative minimums is successful. A

user may misunderstand amount conventions and mistakenly provide a negative number

that is not respected. Further, allowing invalid data to enter the system may increase the

risk to downstream logic.

Recommendation

Note that this finding is marked informational as (effectively) ignoring negative values

could be considered correct. Consider tightening the input validation checks to disallow

negative (and potentially zero) values as these could never be in the user’s best interest.

Info 

(defun add-liquidity:object

( tokenA:module{fungible-v2}

tokenB:module{fungible-v2}

amountA-desired:decimal

amountB-desired:decimal

amountA-min:decimal

amountB-min:decimal

sender:string

to:string

to-guard:guard

)

23 / 58 – Finding Details

 

Client Confidential 



5 Notes Involving Uniswap V2, Kadenaswap

and several Kaddex modules

This informal section contains notes and observations generated during the project. While

all security issues have been reported in the preceding findings, the content below is

relevant for discerning intended functionality, the continutity of phase 1 → phase 2

understanding, and for stimulating interim discussion topics. The content is not intended to

be comprehensive.

 

1 – Scope

The primary materials used for phase 1 of the review include the following:

The target Kaddex code within commit 204b93e  of github.com/kaddex-org/wrapper-

contract, with primary functional paths involving: 

kadenaswap/exchange.pact  – core module for the exchange.

kadenaswap/tokens.pact  – liquidity tokens used by exchange.

kadenaswap/gas-station/gas-station.pact  – creates and manages the gas station.

wrapper/wrapper.pact  – mainly provides for: A) boosted KDX rewards for liquidity

provider fees, B) adding liquidity with a single side of the pair, and C) utility functions

for the front-end to query LP stats.

wrapper/tokens/kdx.pact  – KDX token module, a modified fungible-v2 token.

staking/staking.pact  – manages exchange fees, tracks of users, and distributes

rewards. 

Including wrapper/tokens/alchemist.pact & wrapper/tokens/skdx.pact

Precedent Kadenaswap code at commit e3958cd  of github.com/kadena-io/kadenaswap.

Uniswap V2 code at commit 4dd5906  of github.com/Uniswap/v2-core.

The Pact Smart-Contract Language (whitepaper).

The Pact Language Reference at https://pact-language.readthedocs.io/en/stable/.

The above code built and dynamically exercised through the REPL and local server

interfaces.

The above list was updated as the project progressed. Note that front-end code is not

currently in scope. The project methodology primarily relies upon manual code review

supported by dynamic interaction with testnet interfaces and REPL test cases. Note that

the specific commits listed above are generally the latest available.

 

2 – General Observations

The code contains a significant number of TODO s which all seem sensible and are

assumed to be in plan. The recently added code comments have been helpful.

The overall contract(s) re-entrant lock/mutex may be unnecessary as Pact precludes

reentrancy. However, this could be considered a defense-in-depth risk mitigation for a

well-known and high-impact exploit vector (as Pact’s guarantee pertains to the same

code executed twice rather than a different portion inadvertently executed).

In some places input validation is via ‘aggressive deny’, such as when tokens are

required to be supplied in canonical order. However, in other places the code attempts

to ‘fix and continue’ such as when token mis-ordering is detected then corrected. The

latter more tolerant approach adds unnecessary code complexity and risk.

There is some redundancy in helper functions, such as max  implemented multiple times.

The contracts should be restructured into their simplest most-DRY form.

• 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

- 

• 

• 

• 

• 

• 

• 

• 

• 

• 

24 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 

https://github.com/kaddex-org/wrapper-contract/tree/204b93e2bf845b680f4e7bcfd24ca88e07532ad4
https://github.com/kaddex-org/wrapper-contract/tree/204b93e2bf845b680f4e7bcfd24ca88e07532ad4
https://github.com/kadena-io/kadenaswap/tree/e3958cd2254aacc7c9558af5836ff2ec8612e7ae
https://github.com/Uniswap/v2-core/tree/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc
https://d31d887a-c1e0-47c2-aa51-c69f9f998b07.filesusr.com/ugd/86a16f_442a542b64554cb2a4c1ae7f528ce4c3.pdf
https://pact-language.readthedocs.io/en/stable/


 

2.1 - Uniswap V2 Notes

Uniswap V2 aims to create an exchange market between pairs of tokens. There are three

primary types of participants: the operator, liquidity providers, and token traders.

The operator has very limited presence. Consider this to be the original developers, their

governance, the overall deployment source, ecosystem and a potential sink of a 0.05%

trading fee in the future.

The liquidity providers supply the pair of tokens to an automated, pair-specific, exchange

contract in return for part ownership in the form of a (third) liquidity token. The purpose of

this contract is to allow each token of the pair to be traded for the other token at a floating

rate and for a fee. At any time, liquidity providers can redeem their liquidity token to reclaim

their portion of the pair of tokens at a floating rate along with accumulated fees.

Traders send one type of token to the above contract and receive the other, with the

floating exchange rate based on the relative supply of each token in the pair held.

The contracts are split into a core group and a periphery group. The former group actually

holds the assets, is intentionally minimalistic in functionality, and is security-critical. The

periphery group is intended to provide additional convenience functionality and is not

security-critical. Only the former core group is described below. Furthermore, the intriguing

uint112  type and arithmetic operators are not described here as they will not apply to

Kaddex.

 

3 – The UniswapV2Factory  Contract

The UniswapV2Factory.sol  factory contract is responsible for creating unique pair-specific

exchange/trading contracts, and is also able to turn on the 0.05% protocol charge (and set

the destination). It is deployed and operated by the ‘operator’ participant.

Note that the Uniswap V2 documentation26 has misalignments with the latest contract

code commit. Specifically, the getPair()  and allPairs()  functions are missing and the

two fee-oriented functions are now prefixed with set  in the code (and are state changing

rather than view  only).27

 

3.1 – Contract State Variables, Events, and Constructor

The constructor below is provided with an unvalidated feeToSetter  address when called

during deployment, and all other state variables are initialized empty.

7

8

9

10

11

12

13

address public feeTo;

address public feeToSetter;

mapping(address => mapping(address => address)) public getPair;

address[] public allPairs;

event PairCreated(address indexed token0, address indexed token1, address pair, uint);

26. https://docs.uniswap.org/protocol/V2/reference/smart-contracts/factory

27. https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/

contracts/UniswapV2Factory.sol

25 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 

https://docs.uniswap.org/protocol/V2/reference/smart-contracts/factory
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Factory.sol
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Factory.sol
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Factory.sol


As will be seen in the functionality below, the feeToSetter  address is the only participant

allowed to change the feeTo  and feeToSetter  state variables. In a sense, this is similar to

the contract owner. If/when the feeTo  is set (and is non-zero), that address state variable

indicates the recipient of fees. If a mistake is made when setting the feeToSetter  address

state variable, it will be unrecoverable.

A multi-level mapping is created: consider this as a pair of ERC-20 contract addresses that

index into an array element containing a pair-specific exchange contract address. A list of

all covered pairs is also initialized empty, and an event defined for the deployment of pair-

specific contracts.

The PairCreated  event is emitted each time a pair is created via createPair()  where A) 

token0  is guaranteed to be strictly less than token1  by sort order, and B) the final uint

log value reflects the cumulative number of pairs deployed.

 

3.2 – The allPairsLength()  (helper) Function

The allPairsLength()  function returns the number of pair-specific contracts currently

covered.

This external, read-only and publicly-accessible function should match the last integer on

the PairCreated  event. It should be much cheaper than iterating over the getPair

mapping.

 

3.3 – The createPair()  Function

The createPair()  function deploys a pair-specific UniswapV2Pair.sol  contract to initiate

a pair-specific exchange. This is a central function that all downstream pair-specific

activity depends upon.

14

15

16

17

19

20

21

23

24

25

26

27

28

29

30

31

32

33

34

constructor(address _feeToSetter) public {

feeToSetter = _feeToSetter;

}

function allPairsLength() external view returns (uint) {

return allPairs.length;

}

function createPair(address tokenA, address tokenB) external returns (address pair) {

require(tokenA != tokenB, 'UniswapV2: IDENTICAL_ADDRESSES');

(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, 

tokenA);

require(token0 != address(0), 'UniswapV2: ZERO_ADDRESS');

require(getPair[token0][token1] == address(0), 'UniswapV2: PAIR_EXISTS'); // single 

check is sufficient

bytes memory bytecode = type(UniswapV2Pair).creationCode;

bytes32 salt = keccak256(abi.encodePacked(token0, token1));

assembly {

pair := create2(0, add(bytecode, 32), mload(bytecode), salt)

}

IUniswapV2Pair(pair).initialize(token0, token1);

getPair[token0][token1] = pair;

26 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



This external, state-changing and publicly-accessible function is provided with addresses

for tokenA and tokenB. The code ensures the addresses are not identical, adjusts the

sorted ordering if necessary, checks that the address are non-zero and that the pair has

not already been seen. The code then hashes the token pair for salt, utilizes the create2

assembly code to create, deploy and initialize the pair-specific exchange contract. Finally,

both directions of the getPair  mapping are populated, the pair is pushed onto the 

allPairs  list and an event is emitted.

 

3.4 – The setFeeTo()  Function

The setFeeTo()  function is the gatekeeper/setter of the value of the feeTo  address state

variable.

As seen above, only the feeToSetter  address is able to successfully utilize this external

state-changing function. When called, it is provided with the feeTo  address which

represents the destination of the 0.05% trading fee. When this is set (or is initialized) to

zero, the fee is considered to be off. See Protocol Charge Calculation.

Note that the Uniswap V2 documentation indicates this is a non state-changing view

function and uses a slightly different name (without the set  prefix).

 

3.5 – The setFeeToSetter()  Function

The setFeeToSetter()  function is the gatekeeper/setter to the value of feeToSetter

address state variable.

As seen above, only the feeToSetter  address is able to successfully utilize this external

state-changing function. When called, it is provided with a new feeToSetter  address

which effectively represents the address of the ‘new operator’. See Protocol Charge

Calculation.

Note that the Uniswap V2 documentation indicates this is a non state-changing view

function and uses a slightly different name (without the set  prefix).

 

4 – The UniswapV2Pair  Contract

The UniswapV2Pair.sol  contract is created by the factory contract described above, and

implements a pair-specific token exchange to provide the primary functionality to both

liquidity providers and traders. There are two functional responsibilities: A) automated

35

36

37

38

40

41

42

43

45

46

47

48

getPair[token1][token0] = pair; // populate mapping in the reverse direction

allPairs.push(pair);

emit PairCreated(token0, token1, pair, allPairs.length);

}

function setFeeTo(address _feeTo) external {

require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN');

feeTo = _feeTo;

}

function setFeeToSetter(address _feeToSetter) external {

require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN');

feeToSetter = _feeToSetter;

}

27 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 

https://docs.uniswap.org/protocol/V2/concepts/advanced-topics/fees
https://docs.uniswap.org/protocol/V2/concepts/advanced-topics/fees
https://docs.uniswap.org/protocol/V2/concepts/advanced-topics/fees


market trading, and B) keeping track of token balances. This contract also exposes data

which can be used to build decentralized price oracles. Note that this contract inherits

from UniswapV2ERC20.sol , which provides the the ERC-20 functions for the liquidity

tokens.

 

4.1 – Contract State Variables, Events, and Constructor (inherits from UniswapV2ERC20 )

The no-argument constructor below is called during deployment and simply sets the 

factory  address state variable to the message sender. All other state variables are

initialized empty.

The MINIMUM_LIQUIDITY constant represents a minimum number of liquidity tokens that

always exist (owned by account zero) that helps avoid cases of division by zero. The

SELECTOR constant represents the ABI selector for the ERC-20 transfer function which is

used to transfer ERC-20 tokens.

The factory  address points to the factory contract that created this pool, while the two

token addresses point to the contracts for the two types of ERC-20 tokens that can be

exchanged by this pool.

The two private reserve integers reflect exchange reserves for each token, and it is

generally assumed that the two represent the same amount of value. The third 

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

uint public constant MINIMUM_LIQUIDITY = 10**3;

bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));

address public factory;

address public token0;

address public token1;

uint112 private reserve0;           // uses single storage slot, accessible via getReserves

uint112 private reserve1;           // uses single storage slot, accessible via getReserves

uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves

uint public price0CumulativeLast;

uint public price1CumulativeLast;

uint public kLast; // reserve0 * reserve1, as of immediately after the most recent 

liquidity event

uint private unlocked = 1;

modifier lock() {

require(unlocked == 1, 'UniswapV2: LOCKED');

unlocked = 0;

_;

unlocked = 1;

}

...

event Mint(address indexed sender, uint amount0, uint amount1);

event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);

event Swap(address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint 

amount1Out, address indexed to);

event Sync(uint112 reserve0, uint112 reserve1);

constructor() public {

factory = msg.sender;

}

28 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



blockTimestampLast  integer will track the last block in which an exchange occurred for

rate calculation purposes.

The two price integers hold the cumulative costs for each token in terms of the other. The 

kLast  integer is used to keep multiples of the two reserves constant during trades, and

will be further described below.

The lock-related integer and modifier support reentrancy prevention.

The Mint  event is emitted each time liquidity tokens are created via mint . The Burn , 

Swap , and Sync  events are analogous.

 

4.2 – The getReserves()  Function

The getReserves()  function is a simple getter for the two reserves and timestamp

contract state variables.

This external, read-only, and publicly-accessible function returns the reserves of the token

pair which is used to price trades and distribute liquidity. The function also returns the mod

2
32

 timestamp of the last block during which an interaction occurred for the pair.

 

4.3 – The _safeTransfer()  Function

The _safeTransfer()  function transfers ERC-20 tokens from the exchange to another

address.

This internal state-changing function receives arguments for the token address, the

destination address and the value. It uses the abi SELECTOR when calling into the token.

The function reverts if the external call returns false or if it ends normally but reports a

failure.

 

38

39

40

41

42

44

45

46

47

function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 

_blockTimestampLast) {

_reserve0 = reserve0;

_reserve1 = reserve1;

_blockTimestampLast = blockTimestampLast;

}

function _safeTransfer(address token, address to, uint value) private {

(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, 

value));

require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: 

TRANSFER_FAILED');

}

29 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



4.4 – The initialize()  Function

The initialize()  function is called by the factory contract to initialize the exchange’s

token state address variables.

This external state-changing function can only be called by the factory and receives two

token addresses that it stores in the contract state. Nothing here prevents this function

from being called multiple times, thus presenting a risk that the underlying tokens could

change during operation which could potentially impact liquidity providers.

 

4.5 – The _update()  Function

The _update()  function is called by the exchange’s mint() , burn() , swap() , and skim()

functions to update the contract state variables for reserves and price accumulators.

This private, internal, and state-changing function is called every time tokens are deposited

or withdrawn, and receives both token balances and both token reserves. First the

magnitude of the uint112  balances is checked then the block.timestamp  is truncated to

32 bits. The timeElapsed  value is calculated (and should never overflow as it is only ever

set just down below). With non-zero timestamp and reserve values, new cumulative prices

are calculated. The reserves and last timestamp are set and the Sync  event is emitted.

Note that balances are not checked against zero.

 

65

66

67

68

69

70

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

// called once by the factory at time of deployment

function initialize(address _token0, address _token1) external {

require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check

token0 = _token0;

token1 = _token1;

}

// update reserves and, on the first call per block, price accumulators

function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) 

private {

require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');

uint32 blockTimestamp = uint32(block.timestamp % 2**32);

uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired

if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {

// * never overflows, and + overflow is desired

price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * 

timeElapsed;

price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * 

timeElapsed;

}

reserve0 = uint112(balance0);

reserve1 = uint112(balance1);

blockTimestampLast = blockTimestamp;

emit Sync(reserve0, reserve1);

}

30 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



4.6 – The _mintFee()  Function

The _mintFee()  function is called by the exchange’s mint()  and burn()  functions to

handle the protocol fee.

This private, internal, and state-changing function is called when liquidity is added or

removed from the exchange, and receives both (new) token reserves. First the feeTo  value

is retrieved and if zero, no action is performed other than forcing kLast  to zero. If there is

a non-zero feeTo  address set, the remainder of the logic calculates the 0.05% fee and

mints it. The function returns a boolean indication of whether the feeTo  state variable is

enabled.

 

4.7 – The mint()  Function

The _mint()  function is called when a liquidity provider adds liquidity to the trading pair.

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)

function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {

address feeTo = IUniswapV2Factory(factory).feeTo();

feeOn = feeTo != address(0);

uint _kLast = kLast; // gas savings

if (feeOn) {

if (_kLast != 0) {

uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));

uint rootKLast = Math.sqrt(_kLast);

if (rootK > rootKLast) {

uint numerator = totalSupply.mul(rootK.sub(rootKLast));

uint denominator = rootK.mul(5).add(rootKLast);

uint liquidity = numerator / denominator;

if (liquidity > 0) _mint(feeTo, liquidity);

}

}

} else if (_kLast != 0) {

kLast = 0;

}

}

// this low-level function should be called from a contract which performs important 

safety checks

function mint(address to) external lock returns (uint liquidity) {

(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings

uint balance0 = IERC20(token0).balanceOf(address(this));

uint balance1 = IERC20(token1).balanceOf(address(this));

uint amount0 = balance0.sub(_reserve0);

uint amount1 = balance1.sub(_reserve1);

bool feeOn = _mintFee(_reserve0, _reserve1);

uint _totalSupply = totalSupply; // gas savings, must be defined here since 

totalSupply can update in _mintFee

if (_totalSupply == 0) {

liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);

_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first 

MINIMUM_LIQUIDITY tokens

} else {

liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, 

amount1.mul(_totalSupply) / _reserve1);

}

31 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



This external, state-changing, publicly-accessible, and ‘locking’ function mints liquidity

tokens (and does not involve minting of the ERC-20 token/trading pairs). The function

receives a recipient address, retrieves both the reserves and balances of each token in the

pair, and then calculates proposed amounts by subtracting. After processing the protocol

fee and determining the total supply, the liquidity-to-mint amount is calculated (after

MINIMUM_LIQUIDITY is reserved). The non-zero liquidity is minted, the contract balances/

reserves are updated, and a Mint  event is emitted.

Note that the preceding code comment indicating the need for important safety checks is

not referring to overall system security but rather the potential for user mistakes.

 

4.8 – The burn()  Function

The burn()  function is called when liquidity is withdrawn and the appropriate liquidity

tokens need to be burned.

This external, state-changing, publicly-accessible, and ‘locking’ function burns liquidity

tokens when liquidity is removed from the pair (and does not involving the burning of either

125

126

127

128

129

130

131

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');

_mint(to, liquidity);

_update(balance0, balance1, _reserve0, _reserve1);

if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-

date

emit Mint(msg.sender, amount0, amount1);

}

// this low-level function should be called from a contract which performs important 

safety checks

function burn(address to) external lock returns (uint amount0, uint amount1) {

(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings

address _token0 = token0;                                // gas savings

address _token1 = token1;                                // gas savings

uint balance0 = IERC20(_token0).balanceOf(address(this));

uint balance1 = IERC20(_token1).balanceOf(address(this));

uint liquidity = balanceOf[address(this)];

bool feeOn = _mintFee(_reserve0, _reserve1);

uint _totalSupply = totalSupply; // gas savings, must be defined here since 

totalSupply can update in _mintFee

amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata 

distribution

amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata 

distribution

require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');

_burn(address(this), liquidity);

_safeTransfer(_token0, to, amount0);

_safeTransfer(_token1, to, amount1);

balance0 = IERC20(_token0).balanceOf(address(this));

balance1 = IERC20(_token1).balanceOf(address(this));

_update(balance0, balance1, _reserve0, _reserve1);

if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-

date

emit Burn(msg.sender, amount0, amount1, to);

}

32 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



of the ERC-20 tokens). The function is very similar to mint()  as it receives a recipient

address and then retrieves both the reserves and balances of each token in the pair (along

with liquidity balance). After processing the protocol fee, the liquidity-to-burn and

corresponding token amounts are calculated. The liquidity is burned, ERC-20 tokens are

transferred, the contract balances/reserves are updated, and a Burn  event is emitted.

Note that the preceding code comment indicating the need for important safety checks is

not referring to overall system security but rather the potential for user mistakes.

 

4.9 – The swap()  Function

The swap()  function is called to swap tokens – all swaps happen in this central function

called by another smart contract.

This external, state-changing, publicly-accessible, and ‘locking’ function performs a token

swap for tokens that were (generally) previously transferred to the exchange contract. The

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

// this low-level function should be called from a contract which performs important 

safety checks

function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external 

lock {

require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');

(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings

require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: 

INSUFFICIENT_LIQUIDITY');

uint balance0;

uint balance1;

{ // scope for _token{0,1}, avoids stack too deep errors

address _token0 = token0;

address _token1 = token1;

require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');

if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer 

tokens

if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer 

tokens

if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, 

amount1Out, data);

balance0 = IERC20(_token0).balanceOf(address(this));

balance1 = IERC20(_token1).balanceOf(address(this));

}

uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - 

amount0Out) : 0;

uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - 

amount1Out) : 0;

require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');

{ // scope for reserve{0,1}Adjusted, avoids stack too deep errors

uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));

uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));

require(balance0Adjusted.mul(balance1Adjusted) >= 

uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');

}

_update(balance0, balance1, _reserve0, _reserve1);

emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);

}

33 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



function receives indication of the desired output token amounts, a recipient address, and a

bytestring. The desired output amounts must not both be non-zero and each less than the

corresponding reserve, and the recipient must not be one of the token addresses. The non-

zero tokens are optimistically transferred, and balances updated. The necessary input

amounts are calculated and are required to be positive. Adjusted balances are calculated,

alongside the 0.3% fee, and balances/reserves are updated.

 

4.10 – The skim()  Function

The skim()  function is one of two recovery mechanisms that allows a more graceful

handling of situations where total supplies are greater than the uint112  allows.

This external, state-changing, publicly-accessible, and ‘locking’ function allows a user to

withdraw the difference between the current balance and uint112.MAX  should that be

greater than zero. This is not relevant to Kaddex.

 

4.11 – The sync()  Function

The sync()  function is the second of two recovery mechanisms that protects against

token implementations that can update the pair’s balance.

This external, state-changing, publicly-accessible, and ‘locking’ function resets the

reserves of the token contracts to match the corresponding balance.

 

5 – The UniswapV2ERC20  Contract

The UniswapV2ERC20.sol  contract implements the ERC-20 liquidity token. The purpose of a

standard like ERC-20 is to allow interoperable tokens with widely reviewed functionality.

This particular contract does contain some divergence that will be highlighted below.

 

5.1 – Contract State Variables, Events, and Constructor

The no-argument constructor below is called during deployment and sets the chained

state and calculates a 32-byte DOMAIN_SEPARATOR. All constants are effectively

hardcoded and other state variables are initialized as empty.

189

190

191

192

193

194

195

197

198

199

200

9

10

11

// force balances to match reserves

function skim(address to) external lock {

address _token0 = token0; // gas savings

address _token1 = token1; // gas savings

_safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));

_safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));

}

// force reserves to match balances

function sync() external lock {

_update(IERC20(token0).balanceOf(address(this)), 

IERC20(token1).balanceOf(address(this)), reserve0, reserve1);

}

string public constant name = 'Uniswap V2';

string public constant symbol = 'UNI-V2';

uint8 public constant decimals = 18;

34 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



The name, symbol, and decimals shown above correspond to ERC-20 definitions but are

hardcoded. The totalSupply  and initial mapping of account balances are empty. Nonces

are tracked to prevent replay attacks.

 

5.2 – The _mint()  Function

The _mint()  function is called to create specific amount tokens, credit this amount to a

specific account, and update the total supply.

This internal state-changing function receives a recipient account address and an amount

of tokens to mint. The total supply is updated upwards, the recipient’s balance is credited,

and an event is emitted.

 

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

uint  public totalSupply;

mapping(address => uint) public balanceOf;

mapping(address => mapping(address => uint)) public allowance;

bytes32 public DOMAIN_SEPARATOR;

// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 

deadline)");

bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a

169c64845d6126c9;

mapping(address => uint) public nonces;

event Approval(address indexed owner, address indexed spender, uint value);

event Transfer(address indexed from, address indexed to, uint value);

constructor() public {

uint chainId;

assembly {

chainId := chainid

}

DOMAIN_SEPARATOR = keccak256(

abi.encode(

keccak256('EIP712Domain(string name,string version,uint256 chainId,address 

verifyingContract)'),

keccak256(bytes(name)),

keccak256(bytes('1')),

chainId,

address(this)

)

);

}

function _mint(address to, uint value) internal {

totalSupply = totalSupply.add(value);

balanceOf[to] = balanceOf[to].add(value);

emit Transfer(address(0), to, value);

}

35 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



5.3 – The _burn()  Function

The _burn()  function is called to destroy a specific amount of tokens, debit this amount to

a specific account, and update the total supply.

This internal state-changing function receives a recipient account address and an

unvalidated amount of tokens to burn. The total supply is updated downwards, the

recipient’s balance is credited, and an event is emitted. There is no validation here to

prevent the subtraction from rolling over, though in some cases a SafeMath library is used.

This is not relevant to Kaddex.

 

5.4 – The _approve()  Function

The _approve()  function is called by the public approve()  API function, and creates an

allowance for a spender  over the caller’s token.

This internal state-changing function receives an owner account address, a spender

account address and an amount of tokens to reserve as an allowance. The allowance

mapping is set as appropriate, and an event is emitted.

 

5.5 – The _transfer()  Function

The _transfer()  function is called by the public transfer()  API function, and transfers

tokens from source address from  to sink address to .

This internal state-changing function receives a source address, a sink address, and an

amount of tokens to transfer. The transfer amount is subtracted from the source mapping

entry and added to the sink mapping entry. An event is emitted.

 

5.6 – The approve()  Function

The public approve()  API function is a gatekeeper for the internal _approve()  function

described earlier.

46

47

48

49

50

52

53

54

55

57

58

59

60

61

63

64

65

66

function _burn(address from, uint value) internal {

balanceOf[from] = balanceOf[from].sub(value); 

totalSupply = totalSupply.sub(value);

emit Transfer(from, address(0), value);

}

function _approve(address owner, address spender, uint value) private {

allowance[owner][spender] = value;

emit Approval(owner, spender, value);

}

function _transfer(address from, address to, uint value) private {

balanceOf[from] = balanceOf[from].sub(value);

balanceOf[to] = balanceOf[to].add(value);

emit Transfer(from, to, value);

}

function approve(address spender, uint value) external returns (bool) {

_approve(msg.sender, spender, value);

return true;

}

36 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



This function simply extracts the message sender address and uses that to specify the 

owner  when calling the internal _approve  function.

 

5.7 – The transfer()  Function

The public transfer()  API function is a gatekeeper for the internal _transfer()  function

described earlier.

This function simply extracts the message sender address and uses that to specify the 

owner  when calling the internal _approve  function.

 

5.8 – The transferFrom()  Function

The public transferFrom()  API function moves an approved amount of tokens from source

address from  to sink address to  using the allowance mechanism.

This function receives a source address, a sink address, and an amount. If the allowance

mapping from source to message sender is not set to its maximum value, it is reduced by

amount. The transfer function is then called.

 

5.9 – The permit()  Function

The permit()  function is similar to the approve function except it allows for modifying the

allowance by a signed message rather than strictly by the message sender.

68

69

70

71

73

74

75

76

77

78

79

81

82

83

84

85

86

87

88

89

90

91

92

93

function transfer(address to, uint value) external returns (bool) {

_transfer(msg.sender, to, value);

return true;

}

function transferFrom(address from, address to, uint value) external returns (bool) {

if (allowance[from][msg.sender] != uint(-1)) {

allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);

}

_transfer(from, to, value);

return true;

}

function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 

r, bytes32 s) external {

require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');

bytes32 digest = keccak256(

abi.encodePacked(

'\x19\x01',

DOMAIN_SEPARATOR,

keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, 

deadline))

)

);

address recoveredAddress = ecrecover(digest, v, r, s);

require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: 

INVALID_SIGNATURE');

_approve(owner, spender, value);

}

37 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



This function receives an owner and spender address, token amount, deadline, and three

scalar values for the signature. A digest of the expected message is calculated, and 

ecrecover  is used to determine the address that signed it with v , r , and s . If the

signature is valid, the _approve()  function is called with the owner  parameter (rather than

message sender).

 

6 – Kaddex exchange.pact  (Relative to Kadenaswap and Uniswap V2)

The functions implemented in exchange.pact  are listed below, with the primary API

bolded. New functions that are not present in Kadenaswap are annotated with n , while

relatively simple read-only helper functions are annotated r-h . Note that most functions, 

but not all, have their return type annotated in the code. It would likely be beneficial to

enforce this over all functions.

add-liquidity

add-tracked-path ( n )

burn

canonicalize ( r-h )

chunk-list-pairs ( n , r-h )

compute-in

compute-out

create-fee-account ( n , r-h )

create-pair-account ( r-h )

create-pair

dump-observations ( n , debug)

enforce-contract-unlocked ( n , r-h )

get-observation-key ( n , r-h )

get-oracle-time-cumulative-price ( n )

get-pair-by-key ( n , r-h )

get-pair-key ( r-h )

get-pair ( r-h )

get-pairs ( n , r-h )

get-spot-price-for ( n )

init

is-canonical ( r-h )

is-leg0 ( r-h )

is-path-tracked ( n )

leg-for ( r-h )

maybe-observe ( n )

mint-fee ( n )

mint-fee-manual ( n )

mint

observe-compound-path ( n )

observe-direct ( n )

oracle-add-tracked-path ( n , r-h )

pair-exists ( r-h )

quote ( r-h )

remove-liquidity

reserve-for ( r-h )

rotate-fee-guard ( n )

set-contract-lock ( n )

swap

swap-alloc

swap-exact-in

swap-exact-out

swap-pair

truncate ( r-h )

update-k ( n )

update-reserves

The exchange.pact  module makes use of tokens.pact  to handle liquidity tokens, along

with a number of other helper and interface files.

The primary exchange.pact  API is described below.

 

6.1 – The create-pair  Function

This function is called by the administrator function when initiating coverage for a new pair

of distinct tokens. As described in the comments below, this involves creating a new pair

record, a pair-specific liquidity token, and new empty accounts for each leg of the pair.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

38 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



Once established, liquidity providers may utilize (for example) add-liquidity  and then

traders may utilize (for example) swap-exact-out .

The above function receives arguments indicating the two specific tokens of interest along

with a hint string, then ensures that the overall contract is in the unlocked state.

Lines 1009-1026 calculate the information necessary to subsequently populate the records

below. The key is essentially a string concatenation of the canonically ordered token

names. The tokens are canonically re-ordered if necessary. A pair account and module

guard is created, followed by creation of a fee account and module guard. A pair record p

is then populated.

Finally, state is changed starting on line 1029 as the pair record is inserted, each token’s 

create-account  is called with pair-account info, and the liquidity token’s create-account

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

(defun create-pair:object{pair}

( token0:module{fungible-v2}

token1:module{fungible-v2}

hint:string

)

" Create new pair for legs TOKEN0 and TOKEN1. This creates a new \

\ pair record, a liquidity token named after the canonical pair key \

\ in the 'tokens' module, and new empty accounts in each leg token. \

\ If account key value is already taken in leg tokens, transaction \

\ will fail, which is why HINT exists (which should normally be \"\"), \

\ to further seed the hash function creating the account id."

(enforce-contract-unlocked)

(let* ((key (get-pair-key token0 token1))

(canon (is-canonical token0 token1))

(ctoken0 (if canon token0 token1))

(ctoken1 (if canon token1 token0))

(a (create-pair-account key hint))

(g (create-module-guard key))

(f (create-fee-account key hint))

(fg (create-module-guard key)) ;; TODO: replace this with something the other 

contracts can use?

(p { 'leg0: { 'token: ctoken0, 'reserve: 0.0 }

, 'leg1: { 'token: ctoken1, 'reserve: 0.0 }

, 'account: a

, 'guard: g

, 'fee-account: f

, 'fee-guard: fg

, 'last-k: 0.0

, 'locked: false

})

)

;; create the table entry and all the token accounts

(with-capability (CREATE_PAIR ctoken0 ctoken1 key a)

(insert pairs key p)

(token0::create-account a g)

(token1::create-account a g)

(tokens.create-account key a g)

(tokens.create-account key f fg)

{ "key": key

, "account": a

}))

)

39 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



is called with both the pair-account and fee-account (and guards). The function returns a

pair of key:account information to its caller.

 

6.2 – The add-liquidity  Function

This function is called by a liquidity provider when contributing liquidity to an established

token-pair. Much of the logic involves calculating correct proportions of tokens; note that

the target token-pair may have an initial balance of zero or non-zero. Once a token-pair has

liquidity, the liquidity can either be removed or the tokens can be traded.

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

(defun add-liquidity:object

( tokenA:module{fungible-v2}

tokenB:module{fungible-v2}

amountADesired:decimal

amountBDesired:decimal

amountAMin:decimal

amountBMin:decimal

sender:string

to:string

to-guard:guard

)

"Adds liquidity to an existing pair. The `to` account specified will receive the 

liquidity tokens."

(enforce-contract-unlocked)

(tokenA::enforce-unit amountADesired) ;; enforce the informed amounts are in the correct 

precision

(tokenB::enforce-unit amountBDesired)

(with-capability (MUTEX) ;; obtain the mutex lock

(obtain-pair-lock (get-pair-key tokenA tokenB)))

(let*

( (p (get-pair tokenA tokenB))

(reserveA (reserve-for p tokenA))

(reserveB (reserve-for p tokenB))

;; calculate the actual amounts of liquidity that will be added to keep the reserve 

ratios

(amounts

(if (and (= reserveA 0.0) (= reserveB 0.0))

[amountADesired amountBDesired]

(let ((amountBOptimal (quote amountADesired reserveA reserveB)))

(if (<= amountBOptimal amountBDesired)

(let ((x (enforce (>= amountBOptimal amountBMin)

"add-liquidity: insufficient B amount")))

[amountADesired amountBOptimal])

(let ((amountAOptimal (quote amountBDesired reserveB reserveA)))

(enforce (<= amountAOptimal amountADesired)

"add-liquidity: optimal A less than desired")

(enforce (>= amountAOptimal amountAMin)

"add-liquidity: insufficient A amount")

[amountAOptimal amountBDesired])))))

(amountA (truncate tokenA (at 0 amounts)))

(amountB (truncate tokenB (at 1 amounts)))

(pair-account (at 'account p))

)

(with-capability (UPDATING) ;; if necessary, mint exchange fees

(mint-fee p))

;; transfer the tokens from the user to the pair

(tokenA::transfer sender pair-account amountA)

40 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



The above function receives arguments indicating the two specific tokens of interest, pairs

of amounts desired and minimum acceptable amounts, the sender, and the recipient. The

code first ensures the contract is in the unlocked state and validates the precision of the

desired amounts (finding "Weak Input Validation on `exchange.pact` API" suggests also

validating for positive values). A pair-specific mutex/lock is then acquired to prevent

reentrancy.

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

(tokenB::transfer sender pair-account amountB)

;; mint the liquidity tokens to the user

(let* ;; first we calculate the actual amounts transferred by calling `get-balance`

( (token0:module{fungible-v2} (at 'token (at 'leg0 p)))

(token1:module{fungible-v2} (at 'token (at 'leg1 p)))

(balance0 (token0::get-balance pair-account))

(balance1 (token1::get-balance pair-account))

(reserve0 (at 'reserve (at 'leg0 p)))

(reserve1 (at 'reserve (at 'leg1 p)))

(amount0 (- balance0 reserve0))

(amount1 (- balance1 reserve1))

(key (get-pair-key tokenA tokenB))

;; given the liquidity tokens' total supply, calculate the amount of liquidity we 

need to mint

(totalSupply (tokens.total-supply key))

(lock-account (create-lock-account "")) ;; TODO: add a hint parameter to this 

function as well

(liquidity (tokens.truncate key

(if (= totalSupply 0.0) ;; in this case, we need to mint MINIMUM_LIQUIDITY

(with-capability (ISSUING)

(mint key lock-account (at 'guard p) MINIMUM_LIQUIDITY)

(- (sqrt (* amount0 amount1)) MINIMUM_LIQUIDITY))

(let ((l0 (/ (* amount0 totalSupply) reserve0))

(l1 (/ (* amount1 totalSupply) reserve1))

)

;; here we take the minimum between l0 and l1

(if (<= l0 l1) l0 l1)))))

)

;; mint the liquidity for the user

(enforce (> liquidity 0.0) "mint: insufficient liquidity minted")

(with-capability (ISSUING)

(mint key to to-guard liquidity))

;; update pair reserves and last-k value

(with-capability (UPDATING)

(update-reserves p key balance0 balance1)

(update-k key))

;; release the pair lock

(with-capability (MUTEX)

(release-pair-lock (get-pair-key tokenA tokenB)))

;; return the information to the user

{ "liquidity": liquidity

, "supply": (tokens.total-supply key)

, "amount0": amount0

, "amount1": amount1

}

)

)

)

41 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



Lines 539-561 calculate the actual amount of liquidity to be added to each token in order

to keep the reserve ratios constant (prior to truncation). If both token reserves are empty,

this ratio is simply set to the provided desired amounts. If not, the logic starts with the

amount of token A desired, and sees if the calculated amount of token B is above its

requested minimum. Failing this, the A-B roles are reversed and the calculation will rerun.

Minimal amounts are enforced. The tokens are then transferred on lines 565-566.

Lines 568-578 calculate the actual amounts sent above for use in the subsequent liquidity

calculations. This is done by retrieving balances and reserves, then subtracting. If the total

supply is 0, then the minimum liquidity is minted to the lock account and subtracted away.

Otherwise, the minimum of amount0 * totalSupply / reserve0  and amount1 *

totalSupply / reserve1  is returned as liquidity. The results of these calculations can be

seen in an example scenario tested on lines 162-223 of exchange.repl .

Finally, line 592-607 mints the (positive) liquidity to the recipient, updates reserves and k,

releases the mutex pair-lock, and returns the calculated liquidity, total supply, and token

amounts info to the function caller.

 

6.3 – The remove-liquidity  Function

This function is called by a liquidity provider when extracting liquidity from an established

token-pair. As with add-liquidity  much of the logic involves calculating correct

proportions of tokens.

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

(defun remove-liquidity:object

( tokenA:module{fungible-v2}

tokenB:module{fungible-v2}

liquidity:decimal

amountAMin:decimal

amountBMin:decimal

sender:string

to:string

to-guard:guard

)

"Removes liquidity from an existing pair. The `to` account specified will receive the 

tokens."

(enforce-contract-unlocked)

(with-capability (MUTEX) ;; obtain the pair lock

(obtain-pair-lock (get-pair-key tokenA tokenB)))

(let* ( (p (get-pair tokenA tokenB))

(pair-account (at 'account p))

(pair-key (get-pair-key tokenA tokenB))

)

;; if necessary, mint fee tokens

(with-capability (UPDATING)

(mint-fee p))

;; transfer liquidity tokens from the sender to the pair for burning

(tokens.transfer pair-key sender pair-account liquidity)

(let* ;; calculate current reserves and withdrawal amount

( (token0:module{fungible-v2} (at 'token (at 'leg0 p)))

(token1:module{fungible-v2} (at 'token (at 'leg1 p)))

(balance0 (token0::get-balance pair-account))

(balance1 (token1::get-balance pair-account))

(total-supply (tokens.total-supply pair-key))

(amount0 (truncate token0 (/ (* liquidity balance0) total-supply)))

(amount1 (truncate token1 (/ (* liquidity balance1) total-supply)))

42 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



The above function receives arguments indicating the two specific tokens of interest, an

amount of liquidity to ‘reclaim’, the minimum acceptable token amounts, a sender, and a

recipient. The code first ensures the contract is in the unlocked state and acquires a pair-

specific mutex/lock to prevent reentrancy.

Lines 660-663 retrieves the pair account and key. The mint-fee  function is called on line

666 to update the fee account, followed by the liquidity token reclamation on line 668.

Lines 670-679 retrieves the token balances, total supply, and calculates the proportional

(proposed) amounts of each tokens; these amounts are validated against positive values

and desired minimums on lines 680-686.

The liquidity tokens are then burnt on line 688, token amounts are transferred on lines

691/693, the reserves and k are updated, the pair-specific mutex/lock is released, and the

amount values are reported to the function caller.

 

6.4 – The swap-exact-in  Function

This function performs a series of swaps along a specified path such that an exact amount

of input token results in at least a minimum amount of output tokens.

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

728

729

730

(canon (is-canonical tokenA tokenB))

)

;; enforce values are sensible

(enforce (and (> amount0 0.0) (> amount1 0.0))

"remove-liquidity: insufficient liquidity burned")

(enforce (>= (if canon amount0 amount1) amountAMin)

"remove-liquidity: insufficient A amount")

(enforce (>= (if canon amount1 amount0) amountBMin)

"remove-liquidity: insufficient B amount")

;; burn the liquidity tokens received from the user

(with-capability (ISSUING)

(burn pair-key pair-account liquidity))

;; transfer both tokens to the user

(install-capability (token0::TRANSFER pair-account to amount0))

(token0::transfer-create pair-account to to-guard amount0)

(install-capability (token1::TRANSFER pair-account to amount1))

(token1::transfer-create pair-account to to-guard amount1)

;; update the reserves with the new balances and the last-k value

(with-capability (UPDATING)

(update-reserves p pair-key

(token0::get-balance pair-account)

(token1::get-balance pair-account))

(update-k pair-key))

;; release the pair lock

(with-capability (MUTEX)

(release-pair-lock (get-pair-key tokenA tokenB)))

;; return the withdrawn amounts

{ 'amount0: amount0

, 'amount1: amount1

}

)

)

)

(defun swap-exact-in

( amountIn:decimal

amountOutMin:decimal

43 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



The above function receives arguments indicating the exact amount of input tokens,

minimum acceptable amount of output tokens, a path consisting of a list of tokens, a

sender, and a recipient. The code first ensures the contract is in the unlocked state and the

path length is at least two (it does not validate that the path is acyclic).

Lines 742-755 assembles an allocs  list of steps in reverse order using the compute-out

function to calculate interim token values. The final output amount is validated against the

minimum acceptable output amount. The swap-pair  function is utilized to perform the

actual swaps (in forward order as allocs  is reversed).

 

6.5 – The swap-exact-out  Function

This function performs a series of swaps along a specified path such that an exact amount

of output tokens consumes no more than a maximum amount of input tokens.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

792

793

794

795

796

797

798

799

path:[module{fungible-v2}]

sender:string

to:string

to-guard:guard

)

"Swaps exactly `amountIn` using the token path `path`. Sends from `sender` and `to` 

receives the result tokens. Ensures that the final output amount is at least 

`amountOutMin`"

(enforce-contract-unlocked)

(enforce (>= (length path) 2) "swap-exact-in: invalid path")

;; fold over tail of path with dummy first value to compute outputs

;; assembles allocs in reverse order

(let*

( (p0 (get-pair (at 0 path) (at 1 path)))

(allocs

(fold (compute-out)

[ { 'token-out: (at 0 path)

, 'token-in: (at 1 path)

, 'out: amountIn

, 'in: 0.0

, 'idx: 0

, 'pair: p0

, 'path: path

}]

(drop 1 path)))

)

(enforce (>= (at 'out (at 0 allocs)) amountOutMin)

(format "swap-exact-in: insufficient output amount {}" [(at 'out (at 0 allocs))]))

;; initial dummy is correct for initial transfer

(with-capability (SWAPPING)

(swap-pair sender to to-guard (reverse allocs)))

)

)

(defun swap-exact-out

( amountOut:decimal

amountInMax:decimal

path:[module{fungible-v2}]

sender:string

to:string

to-guard:guard

)

44 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



The above function receives arguments indicating the exact amount of output tokens,

maximum acceptable amount of input tokens, a path consisting of a list of tokens, a sender,

and a recipient. The code first ensures the contract is in the unlocked state and the path

length is at least two (it also does not validate the path is acyclic).

Lines 806-821 assembles an allocs  list of steps in forward order using the compute-in

function to calculate interim token values. The allocs1  list is trivially derived from allocs

by dropping the last item and prepending an initial item. The required input value is

validated against the maximum acceptable amount. The swap-pair  function is utilized to

perform the actual swaps in forward order.

 

7 – Kaddex wrapper.pact

The functions implemented in wrapper.pact  are listed below, with the primary API bolded.

Relatively simple read-only helper functions are annotated r-h . Note that almost all

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

"Swaps enough tokens to get exactly `amountOut` using the token path `path`. Sends from 

`sender` and `to` receives the result tokens. Ensures that the initial input amount is 

at most `amountInMax`"

(enforce-contract-unlocked)

(enforce (>= (length path) 2) "swap-exact-out: invalid path")

;; fold over tail of reverse path with dummy first value to compute inputs

;; assembles allocs in forward order 

(let*

( (rpath (reverse path))

(path-len (length path))

(pz (get-pair (at 0 rpath) (at 1 rpath)))

(e:[module{fungible-v2}] [])

(allocs

(fold (compute-in)

[ { 'token-out: (at 1 rpath)

, 'token-in: (at 0 rpath)

, 'out: 0.0

, 'in: amountOut

, 'idx: path-len

, 'pair: pz

, 'path: e

}]

(drop 1 rpath)))

(allocs1 ;; drop dummy at end, prepend dummy for initial transfer

(+ [  { 'token-out: (at 0 path)

, 'token-in: (at 1 path)

, 'out: (at 'in (at 0 allocs))

, 'in: 0.0

, 'idx: 0

, 'pair: (at 'pair (at 0 allocs))

, 'path: path

} ]

(take (- path-len 1) allocs)))

)

(enforce (<= (at 'out (at 0 allocs1)) amountInMax)

(format "swap-exact-out: excessive input amount {}" [(at 'out (at 0 allocs1))]))

(with-capability (SWAPPING)

(swap-pair sender to to-guard allocs1))

)

)

45 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



functions have their return type annotated in the code, but a very few do not. It would likely

be beneficial to enforce this over all functions. Several functions are marked for clean-up or

removal.

add-liquidity

add-liquidity-one-sided

bank-guard ( r-h )

burn-guard ( r-h )

compute-elapsed-time (r-h`, d)

compute-remaining-time ( r-h )

dump-liquidity ( r-h )

dump-positions ( r-h )

enforce-contract-unlocked ( r-h )

get-all-pending-requests ( r-h )

get-amount-out ( r-h , d)

get-average-price ( r-h )

get-base-token-extended ( r-h )

get-base-token ( r-h )

get-liquidity-account ( r-h )

get-liquidity-position-key ( r-h )

get-liquidity-position ( r-h )

get-one-sided-liquidity-swap-amount

get-other-side-token-amount-after-swap

get-pair-account ( r-h )

get-token-amounts-for-liquidity ( r-h )

get-total-supply-considering-fees

get-user-pending-requests ( r-h )

get-user-position-stats

init

is-base-path

is-reward-request-claimable ( r-h )

liquidity-guard ( r-h )

max ( r-h )

min ( r-h )

min-int ( r-h )

mint-guard ( r-h )

pair-guard ( r-h )

pair-registered ( r-h )

process-claim-request-if-necessary

register-pair

register-pair-only

remove-elem-from-list ( r-h )

remove-liquidity

set-contract-lock

set-fee-multiplier-for-pair

swap-fees-for-base-and-bank

swap-for-base

tokens-equal ( r-h )

update-positions-for-new-multiplier

update-single-position-for-new-

multiplier

withdraw-claim

withdraw-settled-fees-without-booster

The wrapper.pact  module makes use of exchange.pact  to handle trading activity, along

with a number of other helper and interface files.

The primary wrapper.pact  API is described below. Note that the source code is not

excerpted for brevity.

 

7.1 – The register-pair-only  Function

This function ‘initiates’ coverage for a pair of tokens by creating accounts and setting up

state. Liquidity is added separately (though these two operations are combined in 

register-pair ).

The function receives arguments for two tokens, the token paths, and a hint string. The

code first ensures the contract is in the unlocked state and requires the OPS  capability.

Lines 314-326 ensure/adjust correct ordering of the tokens and confirms the validity of the

paths. Next, the pair account name is derived and the token’s create-account  function

called, followed by the same scheme for liquidity token account. An entry to trading-

pairs  is inserted followed by another into liquidity-accounts .

 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

46 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



7.2 – The add-liquidity  Function

Similar to its namesake in exchange.pact , this function adds user liquidity to an existing

pair of tokens.

The function receives arguments for two tokens, the two desired amounts, the minimum

acceptable amounts, a sender, and a receiver. The code first ensures the contract is in the

unlocked state and that the sender is not empty. Lines 901-913 derives the pair-key and

retrieves the pair record from the exchange  module, determines the total (initial) liquidity

amount, followed by retrieving the liquidity accounts, its name and guard, and the liquidity

position key. The exchange.add-liquidity  function is then called with the calculated

parameters. Finally, the reserve amounts for both tokens are retrieved.

Lines 914-927 first binds the results of the prior call to exchange.add-liquidity  function

to add-liquidity-result , reads (with defaults) the target liquidity position records. If no

prior liquidity positions exist and the initial supply is zero, then an initial record is inserted

minus a MINIMUM_LIQUIDITY fee). If no prior liquidity positions exist and the initial supply

is not zero, then an initial record is inserted without subtracting the fee. The difference in

the two prior cases is in the tokenA-pooled  field and its tokenB sibling. If a prior liquidity

position for the user does exist, then the two cases of A) starting at zero (if previously

withdrawn) or, B) starting at non-zero. The liquidity position is then updated.

Finally, the liquidity account for the token pair is updated, and the (bind) add-liquidity-

result  returned from the call to exchange.add-liquidity  is returned to this function’s

caller.

 

7.3 – The remove-liquidity  Function

Similar to its namesake in exchange.pact , this function removes user liquidity from an

existing pair of tokens. It also handles/initiates KDX rewards.

The function receives arguments for two tokens, the amount of liquidity to remove, the

minimum acceptable token amounts, a sender, a receiver and a boolean flag indicating KDX

rewards. The code first ensures the contract is in the unlocked state and that the sender is

not empty. Lines 619-635 retrieves the pair’s record from the exchange  module, derives

the pair-key, retrieves the liquidity account and name, retrieves liquidity position

information, calculates the withdrawal fraction, and sets up pair-account values.

Following the above, lines 636-643 enforce a number of invariants. Lines 646-664

calculates two pooled values, performs a liquidity removal from the exchange contract,

determines reserves and withdrawn amounts, calculates fee values and the remaining total

liquidity.

If the initial KDX rewards boolean flag as true and fees are sufficient, lines 667-714

enforces several more invariants, transfers base adjusted amounts to the user, then

constructs and writes a reward-claim-request record before writing the pending-request

tables. Alternatively, lines 715-721 simply transfer the base tokens.

This function finishes by updating the user’s liquidity position and the token pair account

balance.

 

47 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



7.4 – The withdraw-claim  and withdraw-settled-fees-without-booster  functions

These functions are related to the final steps in user/usage flow but are unexercised in the

code repository. A full description here is prevented by project time pressure. They were

included in the review.

 

8 – Kaddex staking.pact

The staking contract allows participants to stake native Kaddex AMM token (KDX) and earn

rewards. Staking participants earn a portion of the Kaddex AMM fee, proportional to the

amount they staked into the staking contract. The amount of staked KDX and staking/

unstaking events do not influence the AMM’s operation and as such, in its operation, the

staking contract is adjacent to the AMM. The actual amount that’s being rewarded to an

account is roughly the amount the user staked times the “cumulative” delta. The cumulative

is a monotonically increasing quantity, which grows with the staking contract’s yield.

The staking contract has access to a portion of the AMM fees, expressed in AMM’s LP

tokens. The staking conrtact’s operators are in charge of scooping the fee and making it

available to the staking contract’s participants. This happens in sweep-some  and sweep-one

functions. The sweep-one  function removes the liquidity from the fee-account  into staking

contract’s account pairs inside the wrapped tokens, then transfers them to accounts from

which they will be swapped into KDX. This is done for each token pair that the staking

contract keeps track of. From the perspective of a single token, there can exist multiple

staking contract’s accounts on that token, as a token can participate in more than one

pairs. Those accounts are drained in the sweep-some  function, converted into KDX and

finally moved to the special KDX_BANK  account on the KDX contract. It is from the 

KDX_BANK  account that participants finally receive their rewards.

List of Functions

The functions implemented in staking.pact  are listed below:

calculate-new-start

calculate-out ( r-h )

calculate-penalty

calculate-reward

calculate-unlocked-stake

claim

enforce-contract-unlocked

fee-guard

get-kdx-guard

get-pair-record ( r-h )

get-path ( r-h )

get-pool-state ( r-h )

get-stake-record ( r-h )

get-token-record ( r-h )

include-batch

include-one

init

inspect-staker

kdx-guard

lock-stake

max ( r-h )

min ( r-h )

onboard-with-lock

read-unlocked-stake ( r-h )

read-waiting ( r-h )

record-burn

register-pair

register-token-if-unregistered

rollup

set-contract-lock

stake

swap-to-kdx

sweep-all

sweep-one

sweep-some

token-guard

unroll-path ( r-h )

unstake

wrap-guard

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

48 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



Notes below contain brief descriptions of some of the functionalities offered by some of

the listed functions.

 

8.1 – Staking Account Locking Functions

The staking contract keeps track of active staking accounts in stake-table . Each staking

account can potentially contain a list of locks. Each lock consists of an expiry date and the

amount that is locked.

The locking functionality was implemented solely to support vesting schedule during the

initial token sales. Multiple locks per account are included to support non-trivial vesting

schedules.

Even though locks aren’t going to be used in the future, the staking contract has to support

them, at least up to some point. For example, even if support for adding accounts with

locks is removed, functions such as calculate-unlocked-stake  still have to exist, as the

locking information is inside the table, which makes these functions relevant for the review.

Calculating Unlocked Stake

Each time tokens are unstaked, it is necessary to validate that the amount in question is not

locked. This is done using two functions, calculate-unlocked-stake  and read-unlocked-

stake .

The function filters for active locks and subtracts the locked-amount  from the supplied

parameter amount . This function is wrapped by read-unlocked-stake , which simply

calculates the ongoing unlocked amount for a given account.

For the purposes of locking actual funds, lock-stake  and onboard-with-lock  functions are

exposed. It is worth noting that the lock-stake  function does not perform sanity checks

on the until  parameter:

180

181

182

183

184

185

186

187

188

189

192

193

194

195

196

197

199

200

201

(defun calculate-unlocked-stake:decimal (amount:decimal locks:[object{stake-lock}])

"Given a stake amount and a list of stake locks, calculate the unlocked amount  at the 

current block time."

(let*

( (now (at 'block-time (chain-data)))

(is-lock-active (lambda (lock:object{stake-lock}) (< now (at 'until lock))))

(active-locks (filter (is-lock-active) locks)) ;; filter input locks by validity

(locked-amount (fold (+) 0.0 (map (at 'amount) active-locks)))

)

(if (> locked-amount amount) 0.0

(- amount locked-amount))))

(defun read-unlocked-stake:decimal (account:string)

"Given an account name, fetch and calculate the unlocked stake amount at the current 

block time."

(with-read stake-table account

{ 'amount := amount

, 'locks := locks }

(calculate-unlocked-stake amount locks)))

(defun lock-stake (account:string amount:decimal until:time)

"Operator-only function to add a stake lock to a given account."

(with-capability (OPS)

49 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



From the discussions with the development team, these functions appear redundant at this

stage and they may be considered for removal.

 

8.2 – Token Pair Registration

The purpose of the staking contract is to extract a portion of the fees the AMM generates

and distributes them to participants who enrolled in the staking protocol. As such, the

staking contract needs to keep track of which token pools/pairs exist in the exchange. The

staking contract does not fetch all the pools automatically, rather, this is supported as a

manual process in which the operators register token pairs:

At the end of the execution, the register-pair  function inserts a row in the pair-table

which makes the pair in question known to the staking contract. Before that, it takes over

the LP token’s contract fee-account  in order to be able to control accrued fees in the LP

contract for that pair. It also creates accounts for the staking contract in the actual

wrapped tokens; these are necessary since the staking contract needs a placeholder for

202

203

204

205

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(with-read stake-table account

{ 'locks := locks }

(update stake-table account { 'locks: (+ locks  ;; add to locks, which is a list of 

stake-locks

[ { 'amount: amount, 'until: until } ]) }))))

(defun register-pair

(token0:module{fungible-v2}

token1:module{fungible-v2}

hint:string)

"Operator function to register a trading pair with the staking contract. \

\ Registers the component tokens if unregistered, and takes ownership of the \

\ exchange feeTo LP token accounts. Creates a pair-record row for the pair."

(with-capability (OPS)

(let*

( (p (exchange.get-pair token0 token1))

(key (exchange.get-pair-key token0 token1))

(token0-name (format "{}" [token0]))

(token1-name (format "{}" [token1]))

(pair-account-name (hash (format "{}_{}_{}" [token0 token1 hint])))

(fee-account (at 'fee-account p)))

;; Create token accounts (per-token place for remove-liq consolidation)

(register-token-if-unregistered token0 hint)

(register-token-if-unregistered token1 hint)

;; Create pair accounts (per-pair 2x accounts to receive funds

;; immediately from remove-liquidity, which only takes single recipient)

(token0::create-account pair-account-name (token-guard))

(token1::create-account pair-account-name (token-guard))

;; Take ownership of feeTo account if not owned already.

(exchange.rotate-fee-guard key (fee-guard))

;; Create pair record.

(insert pair-table key

{ 'key: key

, 'fee-account: fee-account

, 'fee-guard: (fee-guard)

, 'pair-account: pair-account-name

, 'pair-guard: (token-guard)}))))

50 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



tokens that the LP tokens yield via remove-liquidity  on the LP fees. Finally, the tokens

themselves need to be registered:

This function optionally writes to token-table  which holds the account to which the

tokens will be sent inside the sweep-one  function. An account inside the KDX wrapped

token is created; this is where the KDX that is swapped for the tokens will ultimately land,

before it is transferred to KDX_BANK  and sent to stakers.

 

8.3 – Staking and Unstaking Functions

The staking interface converts the KDX into sKDX and expands to pool in a staggered way:

(defun register-token-if-unregistered (token:module{fungible-v2} hint:string)

"Internal function to register a given fungible-v2 token within the staking \

\ contract. Not called directly; register-pair calls this function. If a \

\ previously unknown token is passed to this function, a corresponding token-record \

\ row is created, and two accounts are created with the same name: one with \

\ the given token, and another with KDX. The token account is used to receive \

\ remove-liquidity outputs when sweeping fees, and the KDX account is used \

\ when swapping the collected token amounts into KDX."

;; require-capability to avoid operators calling this function on its own

(require-capability (OPS))

(let

( (token-name (format "{}" [token]))

;; Generate an opaque account name given the token name and hint string.

(account-name (hash (format "{}_{}" [token hint]))))

(with-default-read token-table token-name

{ 'account: "" }

{ 'account := current-account }

(if (= current-account "") ;; Continue only if the token isn't already registered

(let ((x 0)) ;; throwaway let for many-statement if clause

(token::create-account account-name (token-guard)) ;; Create token account

(if (!= token kdx) ;; If token isn't KDX, create KDX account with same name/guard.

(kdx.create-account account-name (token-guard)) {})

(write token-table token-name ;; Create the token record.

{ 'account: account-name, 'token: token, 'guard: (token-guard) }))

{}))))

(defun stake

(from:string

amount:decimal)

"Request to add a certain amount of KDX to the stake pool. This function \

\ immediately wraps the provided KDX to sKDX, and adds the requested amount \

\ to the stake record's pending-add field. This amount isn't yet included \

\ into the stake pool, see include-some and include-batch for when this queued \

\ amount is actually included into the pool. \

\ The queue system is to mitigate unfairness, as fee sweeping is a discrete \

\ event, and letting people into the pool at any arbitrary period would let \

\ them unfairly partake in fees accrued between the last fee sweep and their \

\ entry time. With the queue, the operator includes waiting participants into \

\ the pool right after a fee sweep."

(with-capability (STAKE from amount)

(enforce (> amount 0.0) "amount must be positive")

;; Wrap the provided KDX into a sKDX account belonging to the user.

(alchemist.wrap amount 'skdx from from (get-kdx-guard from))

;; Write the stake-record. If no prior stake-record exists, create one

;; with default values.

51 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



A number of parameters in the table are required due to staggered pool inclusion ( last-

stake , last-add-request , effective-start  and start-cumulative ).

The interface for unstaking KDX is below:

(with-default-read stake-table from

{ 'account: ""

, 'amount: 0.0

, 'last-claim: PAST_EPOCH

, 'effective-start: PAST_EPOCH

, 'last-stake: PAST_EPOCH

, 'start-cumulative: 0.0

, 'pending-add: 0.0

, 'rollover: 0.0

, 'locks: [] }

{ 'account := account

, 'amount := prev-amount

, 'rollover := prev-rollover

, 'last-claim := last-claim

, 'last-stake := last-stake

, 'effective-start := effective-start

, 'start-cumulative := start-cumulative

, 'pending-add := prev-pending-add

, 'locks := locks }

(write stake-table from

{ 'account: from

, 'amount: prev-amount

, 'last-stake: last-stake

, 'last-add-request: (at 'block-time (chain-data))

, 'pending-add: (+ amount prev-pending-add)

, 'effective-start: effective-start

, 'start-cumulative: start-cumulative

, 'rollover: prev-rollover

, 'last-claim: last-claim

, 'locks: locks }))))

(defun unstake (account:string unstake-amount:decimal)

"Unstake some amount from the given staking account. This will call rollup \

\ in order to realize deserved rewards with the pre-unstake stake amount. \

\ Partial unstaking is supported, and will reset effective-start to the current \

\ block time. If the last stake add was less than PENALTY_PERIOD ago, apply \

\ an unstake penalty of PENALTY_FRACTION."

(with-capability (UNSTAKE account)

;; Since we will be changing the user's staked amount, ensure that their

;; deserved rewards are realized.

(rollup account)

(with-read stake-table account

{ 'amount := stake-amount

, 'locks := locks

, 'rollover := rollover

, 'last-stake := last-stake

, 'effective-start := effective-start

, 'last-claim := last-claim }

(let*

( (g (get-kdx-guard account))

;; The maximum KDX amount that can be unstaked given any stake locks.

(available-amount (calculate-unlocked-stake stake-amount locks))

;; The current pool state.

52 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



Unstaking starts with a rollover, which calculates how much the participant can claim

before the unstaking took place. After applying penalties and sending them to the 

KDX_BANK  account in the KDX contract, the user’s desired amount of funds is sent to their

KDX account.

(state (read state-table STATE_KEY))

;; Current amount of staked KDX in the pool.

(total-staked-kdx (at 'staked-kdx state))

;; Current block time.

(now (at 'block-time (chain-data)))

;; Seconds passed since last stake add. Used to calculate whether the

;; user is within PENALTY_PERIOD.

(seconds (diff-time now last-stake))

;; Unstake penalty amount to be incurred, if any.

(stake-penalty (if (< seconds PENALTY_PERIOD) (floor (* unstake-amount 

PENALTY_FRACTION) (kdx.precision)) 0.0))

;; The net KDX amount to be transferred to the user.

(net-unstake (- unstake-amount stake-penalty))

)

;; The user must have enough unlocked staked KDX to unstake the requested amount.

(enforce (>= available-amount unstake-amount)

(format "Insufficient unlocked stake ({} available {} requested)" [available-amount 

unstake-amount]))

;; The user must request a positive unstake amount.

(enforce (> unstake-amount 0.0) "Unstake amount must be positive")

;; If the user is incurring an unstake penalty, unwrap their penalty from

;; their sKDX account into the KDX_BANK KDX account and record it as burnt

;; in the pool state.

(if (> stake-penalty 0.0)

(with-capability (INTERNAL)

(alchemist.unwrap stake-penalty 'skdx account KDX_BANK (kdx-guard))

(record-burn 'stake account stake-penalty)) {})

;; If the user has any net KDX out, unwrap that amount from their sKDX

;; account into their KDX account.

(if (> net-unstake 0.0)

(alchemist.unwrap net-unstake 'skdx account account g) {})

;; Inform the aggregator of an unstake event. Commented in the REPL as

;; the aggregator isn't integrated into here.

;(kaddex.aggregator.aggregate-unstake account unstake-amount)

;; Reset the user's effective-start, and decrement their staked amount

;; by their requested unstake amount.

(update stake-table account

{ 'amount: (- stake-amount unstake-amount)

, 'effective-start: now })

;; Update the pool state to mark a decrease in total KDX staked.

(update state-table STATE_KEY

{ 'staked-kdx: (- total-staked-kdx unstake-amount) })

true))))

53 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



Additional testing notes

This section lists some of the observations made during the second phase of the review,

mostly focusing on the Wrapper.

create-principal  not implemented in Pact version 4.2: While running the wrapper.repl

unit tests with Pact 4.2.1, the Pact interpreter returned the following error:

Upgrading to Pact 4.3 resolved the issue. The wrapper code enforces versions 3.7 and 4.2

in two different files ( tokens.pact  and exchange.pact ). This was previously discussed in 

finding "Outdated Pact Dependency" and in the following comment in code:

In this observation it is noted that enforcing Pact 4.2 is not sufficient, version 4.3 should be

used.

add-liquidity  can add liquidity in ratio different than A:B: It is possible to send A  tokens

to the exchange’s account in tokenA  out of band. This will be picked up by exchange.pact:

add-liquidity  and, as such, liquidity can be added in arbitrary A:B ratios. This does not

appear to lead to any direct security issues, but is worth documenting.

In more detail, the add-liquidity  caller provides the desired and minimal token A and

token B as arguments to the function. The contract then computes the actual amounts that

will be sent and they respect the ongoing token ratio.

Later in the add-liquidity  function, the actual increase in the exchange’s accounts in

token A and token B is computed:

Right before calling add-liquidity , a user may fund the pair-account  in token A. This will

affect the LP amount calculation and the exchange’s reserves will be updated in a ratio that

is different from A:B.

Inconsistent usage of word “Internal” in comments: Comments for several functions in the

Wrapper and the Staking contracts indicate that functions are internal. All functions

described this way require capabilities and indeed are internal. There exists a minor

deviation from this: get-one-sided-liquidity-swap-amount  is described as internal,

however, this function is read-only and does not require any capabilities.

get-other-side-token-amount-after-swap  slippage parameter not validated: This

function is used with add-liquidity-one-sided  to account for slippage created by the

<interactive>:1:0: Cannot resolve "create-principal"

at : module

:;; TODO: we probably want to add an (enforce-pact-version) call (on every file?)

(let* ;; first we calculate the actual amounts transferred by calling `get-balance`

( (token0:module{fungible-v2} (at 'token (at 'leg0 p)))

(token1:module{fungible-v2} (at 'token (at 'leg1 p)))

(balance0 (token0::get-balance pair-account))

(balance1 (token1::get-balance pair-account))

(reserve0 (at 'reserve (at 'leg0 p)))

(reserve1 (at 'reserve (at 'leg1 p)))

(amount0 (- balance0 reserve0))

(amount1 (- balance1 reserve1))

54 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 

https://github.com/kaddex-org/wrapper-contract/blob/7fa8b0deb3680ee8be772884622781a4ea2b0519/kadenaswap/exchange.pact#L612


swap. The slippage  parameter is expected to be in a certain range, but this is not

enforced:

In addition, comment clarity can be improved in this function, eg.:

The comment refers to the function that’s currently just under the ongoing function, which

could change in the future.

(defun get-other-side-token-amount-after-swap:decimal

( amountA-total:decimal

tokenA:module{fungible-v2}

tokenB:module{fungible-v2}

slippage:decimal ;; this value needs to be greater than or equal to 1

;; a value of 1.01 gives a 1% slippage

)

"Returns the tokenB amount to use for signing a TRANSFER capability when doing an `add-

liquidity-one-sided` call."

;; multiply by the slippage in case the price changes between the user

;; querying this function and calling the function below

(exchange.truncate tokenB (* slippage (at 'out (at 0 out-result))))

)

)

55 / 58 – Notes Involving Uniswap V2,

Kadenaswap and several Kaddex modules  

Client Confidential 



6 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

Medium

56 / 58 – Finding Field Definitions

 

Client Confidential 



Rating Description

Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

57 / 58 – Finding Field Definitions

 

Client Confidential 



7 Contact Info

The team from NCC Group has the following primary members:

Eric Schorn – Technical Lead, Consultant 

eric.schorn@nccgroup.com 

Aleksandar Kircanski – Consultant 

aleksandar.kircanski@nccgroup.com 

Kevin Henry – Consultant 

kevin.henry@nccgroup.com 

Parnian Alimi – Consultant 

parnian.alimi@nccgroup.com 

Javed Samuel – Vice President, Cryptography Services Practice Director 

javed.samuel@nccgroup.com 

The team from Kaddex, Inc. has the following primary members:

Nicolas Ramsrud 

nicolas@kaddex.com 

Adrian Cardoso 

adrian@kaddex.com 

Daniele De Vecchis 

daniele@kaddex.com 

Giuseppe Pace 

giuseppe@kaddex.com 

Gustavo Spelzon 

gustavo@kaddex.com 

Kate Oztunc 

kate@kaddex.com 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

58 / 58 – Contact Info

 

Client Confidential 

mailto:eric.schorn@nccgroup.com
mailto:aleksandar.kircanski@nccgroup.com
mailto:kevin.henry@nccgroup.com
mailto:parnian.alimi@nccgroup.com
mailto:javed.samuel@nccgroup.com
mailto:nicolas@kaddex.com
mailto:adrian@kaddex.com
mailto:daniele@kaddex.com
mailto:giuseppe@kaddex.com
mailto:gustavo@kaddex.com
mailto:kate@kaddex.com

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Token Heist Via Bogus Wrapper Liquidity Removals
	Systemic Unexercised/Untested Functionality
	Missing Checks on time-delta and price-delta Prior to Division
	Outdated Pact Dependency
	Weak Input Validation on exchange.pact API
	Penalty Calculation Zero Maturation Coefficient Edge Case
	Unclear Governance May Allow Market Manipulation
	Discussion Item: Unicode Normalization
	Unnecesary Locking Functionality Exposed
	Dead Code Lines for pair-key
	Unnecessary Privilege Restriction
	Lack of KDX Precision Flooring in Stake/Unstake Functions
	Additional Staking Contract Redundancies and Observations
	Adding Liquidity Allows Negative Minimums

	Notes Involving Uniswap V2, Kadenaswap and several Kaddex modules
	1 – Scope
	2 – General Observations
	3 – The UniswapV2Factory Contract
	4 – The UniswapV2Pair Contract
	5 – The UniswapV2ERC20 Contract
	6 – Kaddex exchange.pact (Relative to Kadenaswap and Uniswap V2)
	7 – Kaddex wrapper.pact
	8 – Kaddex staking.pact
	Additional testing notes

	Finding Field Definitions
	Risk Scale
	Category

	Contact Info

